Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes
We introduce MINFLUX, a concept for localizing photon emitters in space. By probing the emitter with a local intensity minimum of excitation light, MINFLUX minimizes the fluorescence photons needed for high localization precision. In our experiments, 22 times fewer fluorescence photons are required...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00368075_v355_n6325_p606_Balzarotti |
Aporte de: |
id |
todo:paper_00368075_v355_n6325_p606_Balzarotti |
---|---|
record_format |
dspace |
spelling |
todo:paper_00368075_v355_n6325_p606_Balzarotti2023-10-03T14:47:56Z Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes Balzarotti, F. Eilers, Y. Gwosch, K.C. Gynnå, A.H. Westphal, V. Stefani, F.D. Elf, J. Hell, S.W. fluorescent dye protein DNA photoprotein cell organelle cells and cell components coliform bacterium equipment fluorescence image resolution light intensity precision protein Article Escherichia coli excitation fluorescence fluorescence microscopy light macromolecule molecular dynamics nanoimaging photon priority journal ribosome subunit simulation chemistry fluorescence imaging nanotechnology photon procedures single molecule imaging small ribosomal subunit Escherichia coli DNA Escherichia coli Luminescent Proteins Microscopy, Fluorescence Nanotechnology Optical Imaging Photons Ribosome Subunits, Small, Bacterial Single Molecule Imaging We introduce MINFLUX, a concept for localizing photon emitters in space. By probing the emitter with a local intensity minimum of excitation light, MINFLUX minimizes the fluorescence photons needed for high localization precision. In our experiments, 22 times fewer fluorescence photons are required as compared to popular centroid localization. In superresolution microscopy, MINFLUX attained ∼1-nanometer precision, resolving molecules only 6 nanometers apart. MINFLUX tracking of single fluorescent proteins increased the temporal resolution and the number of localizations per trace by a factor of 100, as demonstrated with diffusing 30S ribosomal subunits in living Escherichia coli. As conceptual limits have not been reached, we expect this localization modality to break new ground for observing the dynamics, distribution, and structure of macromolecules in living cells and beyond. © 2017, American Association for the Advancement of Science. All rights reserved. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00368075_v355_n6325_p606_Balzarotti |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
fluorescent dye protein DNA photoprotein cell organelle cells and cell components coliform bacterium equipment fluorescence image resolution light intensity precision protein Article Escherichia coli excitation fluorescence fluorescence microscopy light macromolecule molecular dynamics nanoimaging photon priority journal ribosome subunit simulation chemistry fluorescence imaging nanotechnology photon procedures single molecule imaging small ribosomal subunit Escherichia coli DNA Escherichia coli Luminescent Proteins Microscopy, Fluorescence Nanotechnology Optical Imaging Photons Ribosome Subunits, Small, Bacterial Single Molecule Imaging |
spellingShingle |
fluorescent dye protein DNA photoprotein cell organelle cells and cell components coliform bacterium equipment fluorescence image resolution light intensity precision protein Article Escherichia coli excitation fluorescence fluorescence microscopy light macromolecule molecular dynamics nanoimaging photon priority journal ribosome subunit simulation chemistry fluorescence imaging nanotechnology photon procedures single molecule imaging small ribosomal subunit Escherichia coli DNA Escherichia coli Luminescent Proteins Microscopy, Fluorescence Nanotechnology Optical Imaging Photons Ribosome Subunits, Small, Bacterial Single Molecule Imaging Balzarotti, F. Eilers, Y. Gwosch, K.C. Gynnå, A.H. Westphal, V. Stefani, F.D. Elf, J. Hell, S.W. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes |
topic_facet |
fluorescent dye protein DNA photoprotein cell organelle cells and cell components coliform bacterium equipment fluorescence image resolution light intensity precision protein Article Escherichia coli excitation fluorescence fluorescence microscopy light macromolecule molecular dynamics nanoimaging photon priority journal ribosome subunit simulation chemistry fluorescence imaging nanotechnology photon procedures single molecule imaging small ribosomal subunit Escherichia coli DNA Escherichia coli Luminescent Proteins Microscopy, Fluorescence Nanotechnology Optical Imaging Photons Ribosome Subunits, Small, Bacterial Single Molecule Imaging |
description |
We introduce MINFLUX, a concept for localizing photon emitters in space. By probing the emitter with a local intensity minimum of excitation light, MINFLUX minimizes the fluorescence photons needed for high localization precision. In our experiments, 22 times fewer fluorescence photons are required as compared to popular centroid localization. In superresolution microscopy, MINFLUX attained ∼1-nanometer precision, resolving molecules only 6 nanometers apart. MINFLUX tracking of single fluorescent proteins increased the temporal resolution and the number of localizations per trace by a factor of 100, as demonstrated with diffusing 30S ribosomal subunits in living Escherichia coli. As conceptual limits have not been reached, we expect this localization modality to break new ground for observing the dynamics, distribution, and structure of macromolecules in living cells and beyond. © 2017, American Association for the Advancement of Science. All rights reserved. |
format |
JOUR |
author |
Balzarotti, F. Eilers, Y. Gwosch, K.C. Gynnå, A.H. Westphal, V. Stefani, F.D. Elf, J. Hell, S.W. |
author_facet |
Balzarotti, F. Eilers, Y. Gwosch, K.C. Gynnå, A.H. Westphal, V. Stefani, F.D. Elf, J. Hell, S.W. |
author_sort |
Balzarotti, F. |
title |
Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes |
title_short |
Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes |
title_full |
Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes |
title_fullStr |
Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes |
title_full_unstemmed |
Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes |
title_sort |
nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes |
url |
http://hdl.handle.net/20.500.12110/paper_00368075_v355_n6325_p606_Balzarotti |
work_keys_str_mv |
AT balzarottif nanometerresolutionimagingandtrackingoffluorescentmoleculeswithminimalphotonfluxes AT eilersy nanometerresolutionimagingandtrackingoffluorescentmoleculeswithminimalphotonfluxes AT gwoschkc nanometerresolutionimagingandtrackingoffluorescentmoleculeswithminimalphotonfluxes AT gynnaah nanometerresolutionimagingandtrackingoffluorescentmoleculeswithminimalphotonfluxes AT westphalv nanometerresolutionimagingandtrackingoffluorescentmoleculeswithminimalphotonfluxes AT stefanifd nanometerresolutionimagingandtrackingoffluorescentmoleculeswithminimalphotonfluxes AT elfj nanometerresolutionimagingandtrackingoffluorescentmoleculeswithminimalphotonfluxes AT hellsw nanometerresolutionimagingandtrackingoffluorescentmoleculeswithminimalphotonfluxes |
_version_ |
1807321028864507904 |