id todo:paper_00368075_v355_n6325_p606_Balzarotti
record_format dspace
spelling todo:paper_00368075_v355_n6325_p606_Balzarotti2023-10-03T14:47:56Z Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes Balzarotti, F. Eilers, Y. Gwosch, K.C. Gynnå, A.H. Westphal, V. Stefani, F.D. Elf, J. Hell, S.W. fluorescent dye protein DNA photoprotein cell organelle cells and cell components coliform bacterium equipment fluorescence image resolution light intensity precision protein Article Escherichia coli excitation fluorescence fluorescence microscopy light macromolecule molecular dynamics nanoimaging photon priority journal ribosome subunit simulation chemistry fluorescence imaging nanotechnology photon procedures single molecule imaging small ribosomal subunit Escherichia coli DNA Escherichia coli Luminescent Proteins Microscopy, Fluorescence Nanotechnology Optical Imaging Photons Ribosome Subunits, Small, Bacterial Single Molecule Imaging We introduce MINFLUX, a concept for localizing photon emitters in space. By probing the emitter with a local intensity minimum of excitation light, MINFLUX minimizes the fluorescence photons needed for high localization precision. In our experiments, 22 times fewer fluorescence photons are required as compared to popular centroid localization. In superresolution microscopy, MINFLUX attained ∼1-nanometer precision, resolving molecules only 6 nanometers apart. MINFLUX tracking of single fluorescent proteins increased the temporal resolution and the number of localizations per trace by a factor of 100, as demonstrated with diffusing 30S ribosomal subunits in living Escherichia coli. As conceptual limits have not been reached, we expect this localization modality to break new ground for observing the dynamics, distribution, and structure of macromolecules in living cells and beyond. © 2017, American Association for the Advancement of Science. All rights reserved. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00368075_v355_n6325_p606_Balzarotti
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic fluorescent dye
protein
DNA
photoprotein
cell organelle
cells and cell components
coliform bacterium
equipment
fluorescence
image resolution
light intensity
precision
protein
Article
Escherichia coli
excitation
fluorescence
fluorescence microscopy
light
macromolecule
molecular dynamics
nanoimaging
photon
priority journal
ribosome subunit
simulation
chemistry
fluorescence imaging
nanotechnology
photon
procedures
single molecule imaging
small ribosomal subunit
Escherichia coli
DNA
Escherichia coli
Luminescent Proteins
Microscopy, Fluorescence
Nanotechnology
Optical Imaging
Photons
Ribosome Subunits, Small, Bacterial
Single Molecule Imaging
spellingShingle fluorescent dye
protein
DNA
photoprotein
cell organelle
cells and cell components
coliform bacterium
equipment
fluorescence
image resolution
light intensity
precision
protein
Article
Escherichia coli
excitation
fluorescence
fluorescence microscopy
light
macromolecule
molecular dynamics
nanoimaging
photon
priority journal
ribosome subunit
simulation
chemistry
fluorescence imaging
nanotechnology
photon
procedures
single molecule imaging
small ribosomal subunit
Escherichia coli
DNA
Escherichia coli
Luminescent Proteins
Microscopy, Fluorescence
Nanotechnology
Optical Imaging
Photons
Ribosome Subunits, Small, Bacterial
Single Molecule Imaging
Balzarotti, F.
Eilers, Y.
Gwosch, K.C.
Gynnå, A.H.
Westphal, V.
Stefani, F.D.
Elf, J.
Hell, S.W.
Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes
topic_facet fluorescent dye
protein
DNA
photoprotein
cell organelle
cells and cell components
coliform bacterium
equipment
fluorescence
image resolution
light intensity
precision
protein
Article
Escherichia coli
excitation
fluorescence
fluorescence microscopy
light
macromolecule
molecular dynamics
nanoimaging
photon
priority journal
ribosome subunit
simulation
chemistry
fluorescence imaging
nanotechnology
photon
procedures
single molecule imaging
small ribosomal subunit
Escherichia coli
DNA
Escherichia coli
Luminescent Proteins
Microscopy, Fluorescence
Nanotechnology
Optical Imaging
Photons
Ribosome Subunits, Small, Bacterial
Single Molecule Imaging
description We introduce MINFLUX, a concept for localizing photon emitters in space. By probing the emitter with a local intensity minimum of excitation light, MINFLUX minimizes the fluorescence photons needed for high localization precision. In our experiments, 22 times fewer fluorescence photons are required as compared to popular centroid localization. In superresolution microscopy, MINFLUX attained ∼1-nanometer precision, resolving molecules only 6 nanometers apart. MINFLUX tracking of single fluorescent proteins increased the temporal resolution and the number of localizations per trace by a factor of 100, as demonstrated with diffusing 30S ribosomal subunits in living Escherichia coli. As conceptual limits have not been reached, we expect this localization modality to break new ground for observing the dynamics, distribution, and structure of macromolecules in living cells and beyond. © 2017, American Association for the Advancement of Science. All rights reserved.
format JOUR
author Balzarotti, F.
Eilers, Y.
Gwosch, K.C.
Gynnå, A.H.
Westphal, V.
Stefani, F.D.
Elf, J.
Hell, S.W.
author_facet Balzarotti, F.
Eilers, Y.
Gwosch, K.C.
Gynnå, A.H.
Westphal, V.
Stefani, F.D.
Elf, J.
Hell, S.W.
author_sort Balzarotti, F.
title Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes
title_short Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes
title_full Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes
title_fullStr Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes
title_full_unstemmed Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes
title_sort nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes
url http://hdl.handle.net/20.500.12110/paper_00368075_v355_n6325_p606_Balzarotti
work_keys_str_mv AT balzarottif nanometerresolutionimagingandtrackingoffluorescentmoleculeswithminimalphotonfluxes
AT eilersy nanometerresolutionimagingandtrackingoffluorescentmoleculeswithminimalphotonfluxes
AT gwoschkc nanometerresolutionimagingandtrackingoffluorescentmoleculeswithminimalphotonfluxes
AT gynnaah nanometerresolutionimagingandtrackingoffluorescentmoleculeswithminimalphotonfluxes
AT westphalv nanometerresolutionimagingandtrackingoffluorescentmoleculeswithminimalphotonfluxes
AT stefanifd nanometerresolutionimagingandtrackingoffluorescentmoleculeswithminimalphotonfluxes
AT elfj nanometerresolutionimagingandtrackingoffluorescentmoleculeswithminimalphotonfluxes
AT hellsw nanometerresolutionimagingandtrackingoffluorescentmoleculeswithminimalphotonfluxes
_version_ 1807321028864507904