Error estimates for low-order isoparametric quadrilateral finite elements for plates

This paper deals with the numerical approximation of the bending of a plate modeled by Reissner-Mindlin equations. It is well known that, in order to avoid locking, some kind of reduced integration or mixed interpolation has to be used when solving these equations by finite element methods. In parti...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Durán, R.G., Hernández, E., Hervella-Nieto, L., Liberman, E., Rodríguezh, R.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00361429_v41_n5_p1751_Duran
Aporte de:
id todo:paper_00361429_v41_n5_p1751_Duran
record_format dspace
spelling todo:paper_00361429_v41_n5_p1751_Duran2023-10-03T14:47:43Z Error estimates for low-order isoparametric quadrilateral finite elements for plates Durán, R.G. Hernández, E. Hervella-Nieto, L. Liberman, E. Rodríguezh, R. Isoparametric quadrilaterals MITC methods Reissner-Mindlin Approximation theory Boundary conditions Convergence of numerical methods Finite element method Integration Interpolation Mathematical models Perturbation techniques Tensors Error estimation Isoparametric quadrilaterals Plate thickness Error analysis This paper deals with the numerical approximation of the bending of a plate modeled by Reissner-Mindlin equations. It is well known that, in order to avoid locking, some kind of reduced integration or mixed interpolation has to be used when solving these equations by finite element methods. In particular, one of the most widely used procedures is based on the family of elements called MITC (mixed interpolation of tensorial components). We consider two lowest-order methods of this family on quadrilateral meshes. Under mild assumptions we obtain optimal H1 and L2 error estimates for both methods. These estimates are valid with constants independent of the plate thickness. We also obtain error estimates for the approximation of the plate vibration problem. Finally, we report some numerical experiments showing the very good behavior of the methods, even in some cases not covered by our theory. Fil:Durán, R.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00361429_v41_n5_p1751_Duran
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Isoparametric quadrilaterals
MITC methods
Reissner-Mindlin
Approximation theory
Boundary conditions
Convergence of numerical methods
Finite element method
Integration
Interpolation
Mathematical models
Perturbation techniques
Tensors
Error estimation
Isoparametric quadrilaterals
Plate thickness
Error analysis
spellingShingle Isoparametric quadrilaterals
MITC methods
Reissner-Mindlin
Approximation theory
Boundary conditions
Convergence of numerical methods
Finite element method
Integration
Interpolation
Mathematical models
Perturbation techniques
Tensors
Error estimation
Isoparametric quadrilaterals
Plate thickness
Error analysis
Durán, R.G.
Hernández, E.
Hervella-Nieto, L.
Liberman, E.
Rodríguezh, R.
Error estimates for low-order isoparametric quadrilateral finite elements for plates
topic_facet Isoparametric quadrilaterals
MITC methods
Reissner-Mindlin
Approximation theory
Boundary conditions
Convergence of numerical methods
Finite element method
Integration
Interpolation
Mathematical models
Perturbation techniques
Tensors
Error estimation
Isoparametric quadrilaterals
Plate thickness
Error analysis
description This paper deals with the numerical approximation of the bending of a plate modeled by Reissner-Mindlin equations. It is well known that, in order to avoid locking, some kind of reduced integration or mixed interpolation has to be used when solving these equations by finite element methods. In particular, one of the most widely used procedures is based on the family of elements called MITC (mixed interpolation of tensorial components). We consider two lowest-order methods of this family on quadrilateral meshes. Under mild assumptions we obtain optimal H1 and L2 error estimates for both methods. These estimates are valid with constants independent of the plate thickness. We also obtain error estimates for the approximation of the plate vibration problem. Finally, we report some numerical experiments showing the very good behavior of the methods, even in some cases not covered by our theory.
format JOUR
author Durán, R.G.
Hernández, E.
Hervella-Nieto, L.
Liberman, E.
Rodríguezh, R.
author_facet Durán, R.G.
Hernández, E.
Hervella-Nieto, L.
Liberman, E.
Rodríguezh, R.
author_sort Durán, R.G.
title Error estimates for low-order isoparametric quadrilateral finite elements for plates
title_short Error estimates for low-order isoparametric quadrilateral finite elements for plates
title_full Error estimates for low-order isoparametric quadrilateral finite elements for plates
title_fullStr Error estimates for low-order isoparametric quadrilateral finite elements for plates
title_full_unstemmed Error estimates for low-order isoparametric quadrilateral finite elements for plates
title_sort error estimates for low-order isoparametric quadrilateral finite elements for plates
url http://hdl.handle.net/20.500.12110/paper_00361429_v41_n5_p1751_Duran
work_keys_str_mv AT duranrg errorestimatesforloworderisoparametricquadrilateralfiniteelementsforplates
AT hernandeze errorestimatesforloworderisoparametricquadrilateralfiniteelementsforplates
AT hervellanietol errorestimatesforloworderisoparametricquadrilateralfiniteelementsforplates
AT libermane errorestimatesforloworderisoparametricquadrilateralfiniteelementsforplates
AT rodriguezhr errorestimatesforloworderisoparametricquadrilateralfiniteelementsforplates
_version_ 1782026066772099072