Maximum norm error estimators for three-dimensional elliptic problems
In this paper we define an a posteriori error estimator for finite element approximations of 3-d elliptic problems. We prove that the estimator is equivalent, up to logarithmic factors of the meshsize, to the maximum norm of the error. The results are valid for an arbitrary polyhedral domain and rat...
Guardado en:
Autores principales: | Dari, E., Durán, R.G., Padra, C. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00361429_v37_n2_p683_Dari |
Aporte de: |
Ejemplares similares
-
Maximum norm error estimators for three-dimensional elliptic problems
Publicado: (2000) -
A posteriori error estimates for non-conforming approximation of eigenvalue problems
por: Dari, E.A., et al. -
A posteriori error estimates for non-conforming approximation of eigenvalue problems
por: Duran, Ricardo Guillermo, et al.
Publicado: (2012) -
A posteriori error estimates for the finite element approximation of eigenvalue problems
por: Duran, R.G., et al. -
A posteriori error estimates for the finite element approximation of eigenvalue problems
por: Duran, Ricardo Guillermo, et al.
Publicado: (2003)