Maximum norm error estimators for three-dimensional elliptic problems
In this paper we define an a posteriori error estimator for finite element approximations of 3-d elliptic problems. We prove that the estimator is equivalent, up to logarithmic factors of the meshsize, to the maximum norm of the error. The results are valid for an arbitrary polyhedral domain and rat...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00361429_v37_n2_p683_Dari |
Aporte de: |
id |
todo:paper_00361429_v37_n2_p683_Dari |
---|---|
record_format |
dspace |
spelling |
todo:paper_00361429_v37_n2_p683_Dari2023-10-03T14:47:42Z Maximum norm error estimators for three-dimensional elliptic problems Dari, E. Durán, R.G. Padra, C. A posteriori Adaptivity Error estimators Maximum norm In this paper we define an a posteriori error estimator for finite element approximations of 3-d elliptic problems. We prove that the estimator is equivalent, up to logarithmic factors of the meshsize, to the maximum norm of the error. The results are valid for an arbitrary polyhedral domain and rather general meshes. We also obtain analogous results for the nonconforming method of Crouzeix-Raviart. Finally, we present some numerical results comparing adaptive procedures based on controlling the error in different norms. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00361429_v37_n2_p683_Dari |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
A posteriori Adaptivity Error estimators Maximum norm |
spellingShingle |
A posteriori Adaptivity Error estimators Maximum norm Dari, E. Durán, R.G. Padra, C. Maximum norm error estimators for three-dimensional elliptic problems |
topic_facet |
A posteriori Adaptivity Error estimators Maximum norm |
description |
In this paper we define an a posteriori error estimator for finite element approximations of 3-d elliptic problems. We prove that the estimator is equivalent, up to logarithmic factors of the meshsize, to the maximum norm of the error. The results are valid for an arbitrary polyhedral domain and rather general meshes. We also obtain analogous results for the nonconforming method of Crouzeix-Raviart. Finally, we present some numerical results comparing adaptive procedures based on controlling the error in different norms. |
format |
JOUR |
author |
Dari, E. Durán, R.G. Padra, C. |
author_facet |
Dari, E. Durán, R.G. Padra, C. |
author_sort |
Dari, E. |
title |
Maximum norm error estimators for three-dimensional elliptic problems |
title_short |
Maximum norm error estimators for three-dimensional elliptic problems |
title_full |
Maximum norm error estimators for three-dimensional elliptic problems |
title_fullStr |
Maximum norm error estimators for three-dimensional elliptic problems |
title_full_unstemmed |
Maximum norm error estimators for three-dimensional elliptic problems |
title_sort |
maximum norm error estimators for three-dimensional elliptic problems |
url |
http://hdl.handle.net/20.500.12110/paper_00361429_v37_n2_p683_Dari |
work_keys_str_mv |
AT darie maximumnormerrorestimatorsforthreedimensionalellipticproblems AT duranrg maximumnormerrorestimatorsforthreedimensionalellipticproblems AT padrac maximumnormerrorestimatorsforthreedimensionalellipticproblems |
_version_ |
1807315731757400064 |