Metal-insulator transitions in the periodic Anderson model

We solve the periodic Anderson model in the Mott-Hubbard regime, using dynamical mean field theory. Upon electron doping of the Mott insulator, a metal-insulator transition occurs which is qualitatively similar to that of the single band Hubbard model, namely, with a divergent effective mass and a f...

Descripción completa

Detalles Bibliográficos
Autores principales: Sordi, G., Amaricci, A., Rozenberg, M.J.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00319007_v99_n19_p_Sordi
Aporte de:
id todo:paper_00319007_v99_n19_p_Sordi
record_format dspace
spelling todo:paper_00319007_v99_n19_p_Sordi2023-10-03T14:43:20Z Metal-insulator transitions in the periodic Anderson model Sordi, G. Amaricci, A. Rozenberg, M.J. Doping (additives) Electrons Hubbard model Mean field theory Thermal effects Anderson model Mott insulator Mott-Hubbard regime High energy physics We solve the periodic Anderson model in the Mott-Hubbard regime, using dynamical mean field theory. Upon electron doping of the Mott insulator, a metal-insulator transition occurs which is qualitatively similar to that of the single band Hubbard model, namely, with a divergent effective mass and a first order character at finite temperatures. Surprisingly, upon hole doping, the metal-insulator transition is not first order and does not show a divergent mass. Thus, the transition scenario of the single band Hubbard model is not generic for the periodic Anderson model, even in the Mott-Hubbard regime. © 2007 The American Physical Society. Fil:Rozenberg, M.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00319007_v99_n19_p_Sordi
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Doping (additives)
Electrons
Hubbard model
Mean field theory
Thermal effects
Anderson model
Mott insulator
Mott-Hubbard regime
High energy physics
spellingShingle Doping (additives)
Electrons
Hubbard model
Mean field theory
Thermal effects
Anderson model
Mott insulator
Mott-Hubbard regime
High energy physics
Sordi, G.
Amaricci, A.
Rozenberg, M.J.
Metal-insulator transitions in the periodic Anderson model
topic_facet Doping (additives)
Electrons
Hubbard model
Mean field theory
Thermal effects
Anderson model
Mott insulator
Mott-Hubbard regime
High energy physics
description We solve the periodic Anderson model in the Mott-Hubbard regime, using dynamical mean field theory. Upon electron doping of the Mott insulator, a metal-insulator transition occurs which is qualitatively similar to that of the single band Hubbard model, namely, with a divergent effective mass and a first order character at finite temperatures. Surprisingly, upon hole doping, the metal-insulator transition is not first order and does not show a divergent mass. Thus, the transition scenario of the single band Hubbard model is not generic for the periodic Anderson model, even in the Mott-Hubbard regime. © 2007 The American Physical Society.
format JOUR
author Sordi, G.
Amaricci, A.
Rozenberg, M.J.
author_facet Sordi, G.
Amaricci, A.
Rozenberg, M.J.
author_sort Sordi, G.
title Metal-insulator transitions in the periodic Anderson model
title_short Metal-insulator transitions in the periodic Anderson model
title_full Metal-insulator transitions in the periodic Anderson model
title_fullStr Metal-insulator transitions in the periodic Anderson model
title_full_unstemmed Metal-insulator transitions in the periodic Anderson model
title_sort metal-insulator transitions in the periodic anderson model
url http://hdl.handle.net/20.500.12110/paper_00319007_v99_n19_p_Sordi
work_keys_str_mv AT sordig metalinsulatortransitionsintheperiodicandersonmodel
AT amariccia metalinsulatortransitionsintheperiodicandersonmodel
AT rozenbergmj metalinsulatortransitionsintheperiodicandersonmodel
_version_ 1807316834314092544