Signatures of homoclinic motion in quantum chaos

Homoclinic motion plays a key role in the organization of classical chaos in Hamiltonian systems. In this Letter, we show that it also imprints a clear signature in the corresponding quantum spectra. By numerically studying the fluctuations of the widths of wave functions localized along periodic or...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Wisniacki, D.A., Vergini, E., Benito, R.M., Borondo, F.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00319007_v94_n5_p_Wisniacki
Aporte de:
id todo:paper_00319007_v94_n5_p_Wisniacki
record_format dspace
spelling todo:paper_00319007_v94_n5_p_Wisniacki2023-10-03T14:43:15Z Signatures of homoclinic motion in quantum chaos Wisniacki, D.A. Vergini, E. Benito, R.M. Borondo, F. Gutzwiller trace formula Homoclinic motion Periodic orbits (PO) Quantum chaos Eigenvalues and eigenfunctions Hamiltonians Lyapunov methods Probability density function Quantum theory Resonance Chaos theory Homoclinic motion plays a key role in the organization of classical chaos in Hamiltonian systems. In this Letter, we show that it also imprints a clear signature in the corresponding quantum spectra. By numerically studying the fluctuations of the widths of wave functions localized along periodic orbits we reveal the existence of an oscillatory behavior that is explained solely in terms of the primary homoclinic motion. Furthermore, our results indicate that it survives the semiclassical limit. © 2005 The American Physical Society. Fil:Wisniacki, D.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Vergini, E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00319007_v94_n5_p_Wisniacki
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Gutzwiller trace formula
Homoclinic motion
Periodic orbits (PO)
Quantum chaos
Eigenvalues and eigenfunctions
Hamiltonians
Lyapunov methods
Probability density function
Quantum theory
Resonance
Chaos theory
spellingShingle Gutzwiller trace formula
Homoclinic motion
Periodic orbits (PO)
Quantum chaos
Eigenvalues and eigenfunctions
Hamiltonians
Lyapunov methods
Probability density function
Quantum theory
Resonance
Chaos theory
Wisniacki, D.A.
Vergini, E.
Benito, R.M.
Borondo, F.
Signatures of homoclinic motion in quantum chaos
topic_facet Gutzwiller trace formula
Homoclinic motion
Periodic orbits (PO)
Quantum chaos
Eigenvalues and eigenfunctions
Hamiltonians
Lyapunov methods
Probability density function
Quantum theory
Resonance
Chaos theory
description Homoclinic motion plays a key role in the organization of classical chaos in Hamiltonian systems. In this Letter, we show that it also imprints a clear signature in the corresponding quantum spectra. By numerically studying the fluctuations of the widths of wave functions localized along periodic orbits we reveal the existence of an oscillatory behavior that is explained solely in terms of the primary homoclinic motion. Furthermore, our results indicate that it survives the semiclassical limit. © 2005 The American Physical Society.
format JOUR
author Wisniacki, D.A.
Vergini, E.
Benito, R.M.
Borondo, F.
author_facet Wisniacki, D.A.
Vergini, E.
Benito, R.M.
Borondo, F.
author_sort Wisniacki, D.A.
title Signatures of homoclinic motion in quantum chaos
title_short Signatures of homoclinic motion in quantum chaos
title_full Signatures of homoclinic motion in quantum chaos
title_fullStr Signatures of homoclinic motion in quantum chaos
title_full_unstemmed Signatures of homoclinic motion in quantum chaos
title_sort signatures of homoclinic motion in quantum chaos
url http://hdl.handle.net/20.500.12110/paper_00319007_v94_n5_p_Wisniacki
work_keys_str_mv AT wisniackida signaturesofhomoclinicmotioninquantumchaos
AT verginie signaturesofhomoclinicmotioninquantumchaos
AT benitorm signaturesofhomoclinicmotioninquantumchaos
AT borondof signaturesofhomoclinicmotioninquantumchaos
_version_ 1807317762987524096