Entanglement-Enhanced Phase Estimation without Prior Phase Information

We study the generation of planar quantum squeezed (PQS) states by quantum nondemolition (QND) measurement of an ensemble of Rb87 atoms with a Poisson distributed atom number. Precise calibration of the QND measurement allows us to infer the conditional covariance matrix describing the Fy and Fz com...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Colangelo, G., Martin Ciurana, F., Puentes, G., Mitchell, M.W., Sewell, R.J.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00319007_v118_n23_p_Colangelo
Aporte de:
id todo:paper_00319007_v118_n23_p_Colangelo
record_format dspace
spelling todo:paper_00319007_v118_n23_p_Colangelo2023-10-03T14:42:45Z Entanglement-Enhanced Phase Estimation without Prior Phase Information Colangelo, G. Martin Ciurana, F. Puentes, G. Mitchell, M.W. Sewell, R.J. Atoms Covariance matrix Phase estimation Phase information Prior knowledge QND measurements Quantum nondemolition measurements Single components Spin squeezing inequalities Squeezed state Quantum theory We study the generation of planar quantum squeezed (PQS) states by quantum nondemolition (QND) measurement of an ensemble of Rb87 atoms with a Poisson distributed atom number. Precise calibration of the QND measurement allows us to infer the conditional covariance matrix describing the Fy and Fz components of the PQS states, revealing the dual squeezing characteristic of PQS states. PQS states have been proposed for single-shot phase estimation without prior knowledge of the likely values of the phase. We show that for an arbitrary phase, the generated PQS states can give a metrological advantage of at least 3.1 dB relative to classical states. The PQS state also beats, for most phase angles, single-component-squeezed states generated by QND measurement with the same resources and atom number statistics. Using spin squeezing inequalities, we show that spin-spin entanglement is responsible for the metrological advantage. © 2017 American Physical Society. Fil:Puentes, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00319007_v118_n23_p_Colangelo
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Atoms
Covariance matrix
Phase estimation
Phase information
Prior knowledge
QND measurements
Quantum nondemolition measurements
Single components
Spin squeezing inequalities
Squeezed state
Quantum theory
spellingShingle Atoms
Covariance matrix
Phase estimation
Phase information
Prior knowledge
QND measurements
Quantum nondemolition measurements
Single components
Spin squeezing inequalities
Squeezed state
Quantum theory
Colangelo, G.
Martin Ciurana, F.
Puentes, G.
Mitchell, M.W.
Sewell, R.J.
Entanglement-Enhanced Phase Estimation without Prior Phase Information
topic_facet Atoms
Covariance matrix
Phase estimation
Phase information
Prior knowledge
QND measurements
Quantum nondemolition measurements
Single components
Spin squeezing inequalities
Squeezed state
Quantum theory
description We study the generation of planar quantum squeezed (PQS) states by quantum nondemolition (QND) measurement of an ensemble of Rb87 atoms with a Poisson distributed atom number. Precise calibration of the QND measurement allows us to infer the conditional covariance matrix describing the Fy and Fz components of the PQS states, revealing the dual squeezing characteristic of PQS states. PQS states have been proposed for single-shot phase estimation without prior knowledge of the likely values of the phase. We show that for an arbitrary phase, the generated PQS states can give a metrological advantage of at least 3.1 dB relative to classical states. The PQS state also beats, for most phase angles, single-component-squeezed states generated by QND measurement with the same resources and atom number statistics. Using spin squeezing inequalities, we show that spin-spin entanglement is responsible for the metrological advantage. © 2017 American Physical Society.
format JOUR
author Colangelo, G.
Martin Ciurana, F.
Puentes, G.
Mitchell, M.W.
Sewell, R.J.
author_facet Colangelo, G.
Martin Ciurana, F.
Puentes, G.
Mitchell, M.W.
Sewell, R.J.
author_sort Colangelo, G.
title Entanglement-Enhanced Phase Estimation without Prior Phase Information
title_short Entanglement-Enhanced Phase Estimation without Prior Phase Information
title_full Entanglement-Enhanced Phase Estimation without Prior Phase Information
title_fullStr Entanglement-Enhanced Phase Estimation without Prior Phase Information
title_full_unstemmed Entanglement-Enhanced Phase Estimation without Prior Phase Information
title_sort entanglement-enhanced phase estimation without prior phase information
url http://hdl.handle.net/20.500.12110/paper_00319007_v118_n23_p_Colangelo
work_keys_str_mv AT colangelog entanglementenhancedphaseestimationwithoutpriorphaseinformation
AT martinciuranaf entanglementenhancedphaseestimationwithoutpriorphaseinformation
AT puentesg entanglementenhancedphaseestimationwithoutpriorphaseinformation
AT mitchellmw entanglementenhancedphaseestimationwithoutpriorphaseinformation
AT sewellrj entanglementenhancedphaseestimationwithoutpriorphaseinformation
_version_ 1807318737374674944