Entanglement-Enhanced Phase Estimation without Prior Phase Information
We study the generation of planar quantum squeezed (PQS) states by quantum nondemolition (QND) measurement of an ensemble of Rb87 atoms with a Poisson distributed atom number. Precise calibration of the QND measurement allows us to infer the conditional covariance matrix describing the Fy and Fz com...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00319007_v118_n23_p_Colangelo |
Aporte de: |
id |
todo:paper_00319007_v118_n23_p_Colangelo |
---|---|
record_format |
dspace |
spelling |
todo:paper_00319007_v118_n23_p_Colangelo2023-10-03T14:42:45Z Entanglement-Enhanced Phase Estimation without Prior Phase Information Colangelo, G. Martin Ciurana, F. Puentes, G. Mitchell, M.W. Sewell, R.J. Atoms Covariance matrix Phase estimation Phase information Prior knowledge QND measurements Quantum nondemolition measurements Single components Spin squeezing inequalities Squeezed state Quantum theory We study the generation of planar quantum squeezed (PQS) states by quantum nondemolition (QND) measurement of an ensemble of Rb87 atoms with a Poisson distributed atom number. Precise calibration of the QND measurement allows us to infer the conditional covariance matrix describing the Fy and Fz components of the PQS states, revealing the dual squeezing characteristic of PQS states. PQS states have been proposed for single-shot phase estimation without prior knowledge of the likely values of the phase. We show that for an arbitrary phase, the generated PQS states can give a metrological advantage of at least 3.1 dB relative to classical states. The PQS state also beats, for most phase angles, single-component-squeezed states generated by QND measurement with the same resources and atom number statistics. Using spin squeezing inequalities, we show that spin-spin entanglement is responsible for the metrological advantage. © 2017 American Physical Society. Fil:Puentes, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00319007_v118_n23_p_Colangelo |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Atoms Covariance matrix Phase estimation Phase information Prior knowledge QND measurements Quantum nondemolition measurements Single components Spin squeezing inequalities Squeezed state Quantum theory |
spellingShingle |
Atoms Covariance matrix Phase estimation Phase information Prior knowledge QND measurements Quantum nondemolition measurements Single components Spin squeezing inequalities Squeezed state Quantum theory Colangelo, G. Martin Ciurana, F. Puentes, G. Mitchell, M.W. Sewell, R.J. Entanglement-Enhanced Phase Estimation without Prior Phase Information |
topic_facet |
Atoms Covariance matrix Phase estimation Phase information Prior knowledge QND measurements Quantum nondemolition measurements Single components Spin squeezing inequalities Squeezed state Quantum theory |
description |
We study the generation of planar quantum squeezed (PQS) states by quantum nondemolition (QND) measurement of an ensemble of Rb87 atoms with a Poisson distributed atom number. Precise calibration of the QND measurement allows us to infer the conditional covariance matrix describing the Fy and Fz components of the PQS states, revealing the dual squeezing characteristic of PQS states. PQS states have been proposed for single-shot phase estimation without prior knowledge of the likely values of the phase. We show that for an arbitrary phase, the generated PQS states can give a metrological advantage of at least 3.1 dB relative to classical states. The PQS state also beats, for most phase angles, single-component-squeezed states generated by QND measurement with the same resources and atom number statistics. Using spin squeezing inequalities, we show that spin-spin entanglement is responsible for the metrological advantage. © 2017 American Physical Society. |
format |
JOUR |
author |
Colangelo, G. Martin Ciurana, F. Puentes, G. Mitchell, M.W. Sewell, R.J. |
author_facet |
Colangelo, G. Martin Ciurana, F. Puentes, G. Mitchell, M.W. Sewell, R.J. |
author_sort |
Colangelo, G. |
title |
Entanglement-Enhanced Phase Estimation without Prior Phase Information |
title_short |
Entanglement-Enhanced Phase Estimation without Prior Phase Information |
title_full |
Entanglement-Enhanced Phase Estimation without Prior Phase Information |
title_fullStr |
Entanglement-Enhanced Phase Estimation without Prior Phase Information |
title_full_unstemmed |
Entanglement-Enhanced Phase Estimation without Prior Phase Information |
title_sort |
entanglement-enhanced phase estimation without prior phase information |
url |
http://hdl.handle.net/20.500.12110/paper_00319007_v118_n23_p_Colangelo |
work_keys_str_mv |
AT colangelog entanglementenhancedphaseestimationwithoutpriorphaseinformation AT martinciuranaf entanglementenhancedphaseestimationwithoutpriorphaseinformation AT puentesg entanglementenhancedphaseestimationwithoutpriorphaseinformation AT mitchellmw entanglementenhancedphaseestimationwithoutpriorphaseinformation AT sewellrj entanglementenhancedphaseestimationwithoutpriorphaseinformation |
_version_ |
1807318737374674944 |