Conformal invariance in three-dimensional rotating turbulence
We examine turbulent flows in the presence of solid-body rotation and helical forcing in the framework of stochastic Schramm-Löwner evolution (SLE) curves. The data stem from a run with 15363 grid points, with Reynolds and Rossby numbers of, respectively, 5100 and 0.06. We average the parallel compo...
Autores principales: | , , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00319007_v106_n20_p_Thalabard |
Aporte de: |
id |
todo:paper_00319007_v106_n20_p_Thalabard |
---|---|
record_format |
dspace |
spelling |
todo:paper_00319007_v106_n20_p_Thalabard2023-10-03T14:42:11Z Conformal invariance in three-dimensional rotating turbulence Thalabard, S. Rosenberg, D. Pouquet, A. Mininni, P.D. Brownian diffusivity Conformal invariance Fluid turbulence Grid points Nodal curves Parallel component Reynolds Rossby numbers Rotating turbulence Scaling properties Self-similarities Small scale Solid-body rotation Conformal mapping Three dimensional Turbulence Rotation We examine turbulent flows in the presence of solid-body rotation and helical forcing in the framework of stochastic Schramm-Löwner evolution (SLE) curves. The data stem from a run with 15363 grid points, with Reynolds and Rossby numbers of, respectively, 5100 and 0.06. We average the parallel component of the vorticity in the direction parallel to that of rotation and examine the resulting ω z field for scaling properties of its zero-value contours. We find for the first time for three-dimensional fluid turbulence evidence of nodal curves being conformal invariant, belonging to a SLE class with associated Brownian diffusivity κ=3.6±0.1. SLE behavior is related to the self-similarity of the direct cascade of energy to small scales and to the partial bidimensionalization of the flow because of rotation. We recover the value of κ with a heuristic argument and show that this is consistent with several nontrivial SLE predictions. © 2011 American Physical Society. Fil:Mininni, P.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00319007_v106_n20_p_Thalabard |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Brownian diffusivity Conformal invariance Fluid turbulence Grid points Nodal curves Parallel component Reynolds Rossby numbers Rotating turbulence Scaling properties Self-similarities Small scale Solid-body rotation Conformal mapping Three dimensional Turbulence Rotation |
spellingShingle |
Brownian diffusivity Conformal invariance Fluid turbulence Grid points Nodal curves Parallel component Reynolds Rossby numbers Rotating turbulence Scaling properties Self-similarities Small scale Solid-body rotation Conformal mapping Three dimensional Turbulence Rotation Thalabard, S. Rosenberg, D. Pouquet, A. Mininni, P.D. Conformal invariance in three-dimensional rotating turbulence |
topic_facet |
Brownian diffusivity Conformal invariance Fluid turbulence Grid points Nodal curves Parallel component Reynolds Rossby numbers Rotating turbulence Scaling properties Self-similarities Small scale Solid-body rotation Conformal mapping Three dimensional Turbulence Rotation |
description |
We examine turbulent flows in the presence of solid-body rotation and helical forcing in the framework of stochastic Schramm-Löwner evolution (SLE) curves. The data stem from a run with 15363 grid points, with Reynolds and Rossby numbers of, respectively, 5100 and 0.06. We average the parallel component of the vorticity in the direction parallel to that of rotation and examine the resulting ω z field for scaling properties of its zero-value contours. We find for the first time for three-dimensional fluid turbulence evidence of nodal curves being conformal invariant, belonging to a SLE class with associated Brownian diffusivity κ=3.6±0.1. SLE behavior is related to the self-similarity of the direct cascade of energy to small scales and to the partial bidimensionalization of the flow because of rotation. We recover the value of κ with a heuristic argument and show that this is consistent with several nontrivial SLE predictions. © 2011 American Physical Society. |
format |
JOUR |
author |
Thalabard, S. Rosenberg, D. Pouquet, A. Mininni, P.D. |
author_facet |
Thalabard, S. Rosenberg, D. Pouquet, A. Mininni, P.D. |
author_sort |
Thalabard, S. |
title |
Conformal invariance in three-dimensional rotating turbulence |
title_short |
Conformal invariance in three-dimensional rotating turbulence |
title_full |
Conformal invariance in three-dimensional rotating turbulence |
title_fullStr |
Conformal invariance in three-dimensional rotating turbulence |
title_full_unstemmed |
Conformal invariance in three-dimensional rotating turbulence |
title_sort |
conformal invariance in three-dimensional rotating turbulence |
url |
http://hdl.handle.net/20.500.12110/paper_00319007_v106_n20_p_Thalabard |
work_keys_str_mv |
AT thalabards conformalinvarianceinthreedimensionalrotatingturbulence AT rosenbergd conformalinvarianceinthreedimensionalrotatingturbulence AT pouqueta conformalinvarianceinthreedimensionalrotatingturbulence AT mininnipd conformalinvarianceinthreedimensionalrotatingturbulence |
_version_ |
1807319916104122368 |