Conformal invariance in three-dimensional rotating turbulence

We examine turbulent flows in the presence of solid-body rotation and helical forcing in the framework of stochastic Schramm-Löwner evolution (SLE) curves. The data stem from a run with 15363 grid points, with Reynolds and Rossby numbers of, respectively, 5100 and 0.06. We average the parallel compo...

Descripción completa

Detalles Bibliográficos
Autores principales: Thalabard, S., Rosenberg, D., Pouquet, A., Mininni, P.D.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00319007_v106_n20_p_Thalabard
Aporte de:
id todo:paper_00319007_v106_n20_p_Thalabard
record_format dspace
spelling todo:paper_00319007_v106_n20_p_Thalabard2023-10-03T14:42:11Z Conformal invariance in three-dimensional rotating turbulence Thalabard, S. Rosenberg, D. Pouquet, A. Mininni, P.D. Brownian diffusivity Conformal invariance Fluid turbulence Grid points Nodal curves Parallel component Reynolds Rossby numbers Rotating turbulence Scaling properties Self-similarities Small scale Solid-body rotation Conformal mapping Three dimensional Turbulence Rotation We examine turbulent flows in the presence of solid-body rotation and helical forcing in the framework of stochastic Schramm-Löwner evolution (SLE) curves. The data stem from a run with 15363 grid points, with Reynolds and Rossby numbers of, respectively, 5100 and 0.06. We average the parallel component of the vorticity in the direction parallel to that of rotation and examine the resulting ω z field for scaling properties of its zero-value contours. We find for the first time for three-dimensional fluid turbulence evidence of nodal curves being conformal invariant, belonging to a SLE class with associated Brownian diffusivity κ=3.6±0.1. SLE behavior is related to the self-similarity of the direct cascade of energy to small scales and to the partial bidimensionalization of the flow because of rotation. We recover the value of κ with a heuristic argument and show that this is consistent with several nontrivial SLE predictions. © 2011 American Physical Society. Fil:Mininni, P.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00319007_v106_n20_p_Thalabard
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Brownian diffusivity
Conformal invariance
Fluid turbulence
Grid points
Nodal curves
Parallel component
Reynolds
Rossby numbers
Rotating turbulence
Scaling properties
Self-similarities
Small scale
Solid-body rotation
Conformal mapping
Three dimensional
Turbulence
Rotation
spellingShingle Brownian diffusivity
Conformal invariance
Fluid turbulence
Grid points
Nodal curves
Parallel component
Reynolds
Rossby numbers
Rotating turbulence
Scaling properties
Self-similarities
Small scale
Solid-body rotation
Conformal mapping
Three dimensional
Turbulence
Rotation
Thalabard, S.
Rosenberg, D.
Pouquet, A.
Mininni, P.D.
Conformal invariance in three-dimensional rotating turbulence
topic_facet Brownian diffusivity
Conformal invariance
Fluid turbulence
Grid points
Nodal curves
Parallel component
Reynolds
Rossby numbers
Rotating turbulence
Scaling properties
Self-similarities
Small scale
Solid-body rotation
Conformal mapping
Three dimensional
Turbulence
Rotation
description We examine turbulent flows in the presence of solid-body rotation and helical forcing in the framework of stochastic Schramm-Löwner evolution (SLE) curves. The data stem from a run with 15363 grid points, with Reynolds and Rossby numbers of, respectively, 5100 and 0.06. We average the parallel component of the vorticity in the direction parallel to that of rotation and examine the resulting ω z field for scaling properties of its zero-value contours. We find for the first time for three-dimensional fluid turbulence evidence of nodal curves being conformal invariant, belonging to a SLE class with associated Brownian diffusivity κ=3.6±0.1. SLE behavior is related to the self-similarity of the direct cascade of energy to small scales and to the partial bidimensionalization of the flow because of rotation. We recover the value of κ with a heuristic argument and show that this is consistent with several nontrivial SLE predictions. © 2011 American Physical Society.
format JOUR
author Thalabard, S.
Rosenberg, D.
Pouquet, A.
Mininni, P.D.
author_facet Thalabard, S.
Rosenberg, D.
Pouquet, A.
Mininni, P.D.
author_sort Thalabard, S.
title Conformal invariance in three-dimensional rotating turbulence
title_short Conformal invariance in three-dimensional rotating turbulence
title_full Conformal invariance in three-dimensional rotating turbulence
title_fullStr Conformal invariance in three-dimensional rotating turbulence
title_full_unstemmed Conformal invariance in three-dimensional rotating turbulence
title_sort conformal invariance in three-dimensional rotating turbulence
url http://hdl.handle.net/20.500.12110/paper_00319007_v106_n20_p_Thalabard
work_keys_str_mv AT thalabards conformalinvarianceinthreedimensionalrotatingturbulence
AT rosenbergd conformalinvarianceinthreedimensionalrotatingturbulence
AT pouqueta conformalinvarianceinthreedimensionalrotatingturbulence
AT mininnipd conformalinvarianceinthreedimensionalrotatingturbulence
_version_ 1807319916104122368