Non-fermi-liquid behavior in the periodic Anderson model

We study the Mott metal-insulator transition in the periodic Anderson model with dynamical mean field theory (DMFT). Near the quantum transition, we find a non-Fermi-liquid metallic state down to a vanishing temperature scale. We identify the origin of the non-Fermi-liquid behavior as being due to m...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Amaricci, A., Sordi, G., Rozenberg, M.J.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00319007_v101_n14_p_Amaricci
Aporte de:
id todo:paper_00319007_v101_n14_p_Amaricci
record_format dspace
spelling todo:paper_00319007_v101_n14_p_Amaricci2023-10-03T14:42:01Z Non-fermi-liquid behavior in the periodic Anderson model Amaricci, A. Sordi, G. Rozenberg, M.J. Fermi surface Fermions Magnetic anisotropy Magnetic fields Magnetic materials Magnetic properties Mean field theory Metal insulator boundaries Semiconductor insulator boundaries Semiconductor quantum dots Statistical mechanics Doped carriers Dynamical mean-field theory External magnetic fields Heavy fermion systems Localized moments Magnetic fluctuations Magnetic scattering Metal insulators Metallic states Non-Fermi-liquid Non-fermi-liquid behavior Periodic Anderson model Quantum transitions Metal insulator transition We study the Mott metal-insulator transition in the periodic Anderson model with dynamical mean field theory (DMFT). Near the quantum transition, we find a non-Fermi-liquid metallic state down to a vanishing temperature scale. We identify the origin of the non-Fermi-liquid behavior as being due to magnetic scattering of the doped carriers by the localized moments. The non-Fermi-liquid state can be tuned by either doping or external magnetic field. Our results show that the coupling to spatial magnetic fluctuations (absent in DMFT) is not a prerequisite to realizing a non-Fermi-liquid scenario for heavy fermion systems. © 2008 The American Physical Society. Fil:Rozenberg, M.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00319007_v101_n14_p_Amaricci
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Fermi surface
Fermions
Magnetic anisotropy
Magnetic fields
Magnetic materials
Magnetic properties
Mean field theory
Metal insulator boundaries
Semiconductor insulator boundaries
Semiconductor quantum dots
Statistical mechanics
Doped carriers
Dynamical mean-field theory
External magnetic fields
Heavy fermion systems
Localized moments
Magnetic fluctuations
Magnetic scattering
Metal insulators
Metallic states
Non-Fermi-liquid
Non-fermi-liquid behavior
Periodic Anderson model
Quantum transitions
Metal insulator transition
spellingShingle Fermi surface
Fermions
Magnetic anisotropy
Magnetic fields
Magnetic materials
Magnetic properties
Mean field theory
Metal insulator boundaries
Semiconductor insulator boundaries
Semiconductor quantum dots
Statistical mechanics
Doped carriers
Dynamical mean-field theory
External magnetic fields
Heavy fermion systems
Localized moments
Magnetic fluctuations
Magnetic scattering
Metal insulators
Metallic states
Non-Fermi-liquid
Non-fermi-liquid behavior
Periodic Anderson model
Quantum transitions
Metal insulator transition
Amaricci, A.
Sordi, G.
Rozenberg, M.J.
Non-fermi-liquid behavior in the periodic Anderson model
topic_facet Fermi surface
Fermions
Magnetic anisotropy
Magnetic fields
Magnetic materials
Magnetic properties
Mean field theory
Metal insulator boundaries
Semiconductor insulator boundaries
Semiconductor quantum dots
Statistical mechanics
Doped carriers
Dynamical mean-field theory
External magnetic fields
Heavy fermion systems
Localized moments
Magnetic fluctuations
Magnetic scattering
Metal insulators
Metallic states
Non-Fermi-liquid
Non-fermi-liquid behavior
Periodic Anderson model
Quantum transitions
Metal insulator transition
description We study the Mott metal-insulator transition in the periodic Anderson model with dynamical mean field theory (DMFT). Near the quantum transition, we find a non-Fermi-liquid metallic state down to a vanishing temperature scale. We identify the origin of the non-Fermi-liquid behavior as being due to magnetic scattering of the doped carriers by the localized moments. The non-Fermi-liquid state can be tuned by either doping or external magnetic field. Our results show that the coupling to spatial magnetic fluctuations (absent in DMFT) is not a prerequisite to realizing a non-Fermi-liquid scenario for heavy fermion systems. © 2008 The American Physical Society.
format JOUR
author Amaricci, A.
Sordi, G.
Rozenberg, M.J.
author_facet Amaricci, A.
Sordi, G.
Rozenberg, M.J.
author_sort Amaricci, A.
title Non-fermi-liquid behavior in the periodic Anderson model
title_short Non-fermi-liquid behavior in the periodic Anderson model
title_full Non-fermi-liquid behavior in the periodic Anderson model
title_fullStr Non-fermi-liquid behavior in the periodic Anderson model
title_full_unstemmed Non-fermi-liquid behavior in the periodic Anderson model
title_sort non-fermi-liquid behavior in the periodic anderson model
url http://hdl.handle.net/20.500.12110/paper_00319007_v101_n14_p_Amaricci
work_keys_str_mv AT amariccia nonfermiliquidbehaviorintheperiodicandersonmodel
AT sordig nonfermiliquidbehaviorintheperiodicandersonmodel
AT rozenbergmj nonfermiliquidbehaviorintheperiodicandersonmodel
_version_ 1782026640985948160