Exactly solvable models for trapped boson systems

The pairing model (PM) hamiltonian was solved exactly for both boson and fermion systems by Richardson in the 1960s. We review here recent work to generalize the boson PM, by using the complete set of integrals of motion of the pairing algebra, so that it can be used to describe finite trapped atomi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Dukelsky, J., Dussel, G.G., Pittel, S.
Formato: JOUR
Materias:
BEC
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00304018_v243_n1-6_p131_Dukelsky
Aporte de:
id todo:paper_00304018_v243_n1-6_p131_Dukelsky
record_format dspace
spelling todo:paper_00304018_v243_n1-6_p131_Dukelsky2023-10-03T14:40:10Z Exactly solvable models for trapped boson systems Dukelsky, J. Dussel, G.G. Pittel, S. Atom-molecule systems BEC Integrable models Density measurement (optical) Dimers Fermi level Fermions Integral equations Quantum theory Statistics Atom-molecule mixtures Atom-molecule systems BEC Fermion systems Integrable models Hamiltonians The pairing model (PM) hamiltonian was solved exactly for both boson and fermion systems by Richardson in the 1960s. We review here recent work to generalize the boson PM, by using the complete set of integrals of motion of the pairing algebra, so that it can be used to describe finite trapped atomic boson systems. We then show how these integrable models can be further extended for application to atom-molecule mixtures. © 2004 Elsevier B.V. All rights reserved. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00304018_v243_n1-6_p131_Dukelsky
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Atom-molecule systems
BEC
Integrable models
Density measurement (optical)
Dimers
Fermi level
Fermions
Integral equations
Quantum theory
Statistics
Atom-molecule mixtures
Atom-molecule systems
BEC
Fermion systems
Integrable models
Hamiltonians
spellingShingle Atom-molecule systems
BEC
Integrable models
Density measurement (optical)
Dimers
Fermi level
Fermions
Integral equations
Quantum theory
Statistics
Atom-molecule mixtures
Atom-molecule systems
BEC
Fermion systems
Integrable models
Hamiltonians
Dukelsky, J.
Dussel, G.G.
Pittel, S.
Exactly solvable models for trapped boson systems
topic_facet Atom-molecule systems
BEC
Integrable models
Density measurement (optical)
Dimers
Fermi level
Fermions
Integral equations
Quantum theory
Statistics
Atom-molecule mixtures
Atom-molecule systems
BEC
Fermion systems
Integrable models
Hamiltonians
description The pairing model (PM) hamiltonian was solved exactly for both boson and fermion systems by Richardson in the 1960s. We review here recent work to generalize the boson PM, by using the complete set of integrals of motion of the pairing algebra, so that it can be used to describe finite trapped atomic boson systems. We then show how these integrable models can be further extended for application to atom-molecule mixtures. © 2004 Elsevier B.V. All rights reserved.
format JOUR
author Dukelsky, J.
Dussel, G.G.
Pittel, S.
author_facet Dukelsky, J.
Dussel, G.G.
Pittel, S.
author_sort Dukelsky, J.
title Exactly solvable models for trapped boson systems
title_short Exactly solvable models for trapped boson systems
title_full Exactly solvable models for trapped boson systems
title_fullStr Exactly solvable models for trapped boson systems
title_full_unstemmed Exactly solvable models for trapped boson systems
title_sort exactly solvable models for trapped boson systems
url http://hdl.handle.net/20.500.12110/paper_00304018_v243_n1-6_p131_Dukelsky
work_keys_str_mv AT dukelskyj exactlysolvablemodelsfortrappedbosonsystems
AT dusselgg exactlysolvablemodelsfortrappedbosonsystems
AT pittels exactlysolvablemodelsfortrappedbosonsystems
_version_ 1807317123674931200