Exactly solvable models for trapped boson systems
The pairing model (PM) hamiltonian was solved exactly for both boson and fermion systems by Richardson in the 1960s. We review here recent work to generalize the boson PM, by using the complete set of integrals of motion of the pairing algebra, so that it can be used to describe finite trapped atomi...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00304018_v243_n1-6_p131_Dukelsky |
Aporte de: |
id |
todo:paper_00304018_v243_n1-6_p131_Dukelsky |
---|---|
record_format |
dspace |
spelling |
todo:paper_00304018_v243_n1-6_p131_Dukelsky2023-10-03T14:40:10Z Exactly solvable models for trapped boson systems Dukelsky, J. Dussel, G.G. Pittel, S. Atom-molecule systems BEC Integrable models Density measurement (optical) Dimers Fermi level Fermions Integral equations Quantum theory Statistics Atom-molecule mixtures Atom-molecule systems BEC Fermion systems Integrable models Hamiltonians The pairing model (PM) hamiltonian was solved exactly for both boson and fermion systems by Richardson in the 1960s. We review here recent work to generalize the boson PM, by using the complete set of integrals of motion of the pairing algebra, so that it can be used to describe finite trapped atomic boson systems. We then show how these integrable models can be further extended for application to atom-molecule mixtures. © 2004 Elsevier B.V. All rights reserved. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00304018_v243_n1-6_p131_Dukelsky |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Atom-molecule systems BEC Integrable models Density measurement (optical) Dimers Fermi level Fermions Integral equations Quantum theory Statistics Atom-molecule mixtures Atom-molecule systems BEC Fermion systems Integrable models Hamiltonians |
spellingShingle |
Atom-molecule systems BEC Integrable models Density measurement (optical) Dimers Fermi level Fermions Integral equations Quantum theory Statistics Atom-molecule mixtures Atom-molecule systems BEC Fermion systems Integrable models Hamiltonians Dukelsky, J. Dussel, G.G. Pittel, S. Exactly solvable models for trapped boson systems |
topic_facet |
Atom-molecule systems BEC Integrable models Density measurement (optical) Dimers Fermi level Fermions Integral equations Quantum theory Statistics Atom-molecule mixtures Atom-molecule systems BEC Fermion systems Integrable models Hamiltonians |
description |
The pairing model (PM) hamiltonian was solved exactly for both boson and fermion systems by Richardson in the 1960s. We review here recent work to generalize the boson PM, by using the complete set of integrals of motion of the pairing algebra, so that it can be used to describe finite trapped atomic boson systems. We then show how these integrable models can be further extended for application to atom-molecule mixtures. © 2004 Elsevier B.V. All rights reserved. |
format |
JOUR |
author |
Dukelsky, J. Dussel, G.G. Pittel, S. |
author_facet |
Dukelsky, J. Dussel, G.G. Pittel, S. |
author_sort |
Dukelsky, J. |
title |
Exactly solvable models for trapped boson systems |
title_short |
Exactly solvable models for trapped boson systems |
title_full |
Exactly solvable models for trapped boson systems |
title_fullStr |
Exactly solvable models for trapped boson systems |
title_full_unstemmed |
Exactly solvable models for trapped boson systems |
title_sort |
exactly solvable models for trapped boson systems |
url |
http://hdl.handle.net/20.500.12110/paper_00304018_v243_n1-6_p131_Dukelsky |
work_keys_str_mv |
AT dukelskyj exactlysolvablemodelsfortrappedbosonsystems AT dusselgg exactlysolvablemodelsfortrappedbosonsystems AT pittels exactlysolvablemodelsfortrappedbosonsystems |
_version_ |
1807317123674931200 |