Non commutative truncated polynomial extensions

We introduce the notion of non commutative truncated polynomial extension of an algebra . A. We study two families of these extensions. For the first one we obtain a complete classification and for the second one, which we call upper triangular, we find that the obstructions to inductively construct...

Descripción completa

Detalles Bibliográficos
Autores principales: Guccione, J.A., Guccione, J.J., Valqui, C.
Formato: JOUR
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00224049_v216_n11_p2315_Guccione
Aporte de:
id todo:paper_00224049_v216_n11_p2315_Guccione
record_format dspace
spelling todo:paper_00224049_v216_n11_p2315_Guccione2023-10-03T14:32:43Z Non commutative truncated polynomial extensions Guccione, J.A. Guccione, J.J. Valqui, C. We introduce the notion of non commutative truncated polynomial extension of an algebra . A. We study two families of these extensions. For the first one we obtain a complete classification and for the second one, which we call upper triangular, we find that the obstructions to inductively construct them, lie in the Hochschild homology of . A, with coefficients in a suitable . A-bimodule. © 2012 Elsevier B.V. Fil:Guccione, J.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Guccione, J.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00224049_v216_n11_p2315_Guccione
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description We introduce the notion of non commutative truncated polynomial extension of an algebra . A. We study two families of these extensions. For the first one we obtain a complete classification and for the second one, which we call upper triangular, we find that the obstructions to inductively construct them, lie in the Hochschild homology of . A, with coefficients in a suitable . A-bimodule. © 2012 Elsevier B.V.
format JOUR
author Guccione, J.A.
Guccione, J.J.
Valqui, C.
spellingShingle Guccione, J.A.
Guccione, J.J.
Valqui, C.
Non commutative truncated polynomial extensions
author_facet Guccione, J.A.
Guccione, J.J.
Valqui, C.
author_sort Guccione, J.A.
title Non commutative truncated polynomial extensions
title_short Non commutative truncated polynomial extensions
title_full Non commutative truncated polynomial extensions
title_fullStr Non commutative truncated polynomial extensions
title_full_unstemmed Non commutative truncated polynomial extensions
title_sort non commutative truncated polynomial extensions
url http://hdl.handle.net/20.500.12110/paper_00224049_v216_n11_p2315_Guccione
work_keys_str_mv AT guccioneja noncommutativetruncatedpolynomialextensions
AT guccionejj noncommutativetruncatedpolynomialextensions
AT valquic noncommutativetruncatedpolynomialextensions
_version_ 1807323404324306944