Equivalence and s-equivalence of vector-tensor Lagrangians

It will be proven that if a gauge-invariant Lagrangian density having the local form L = L(gij;Ai;Aij) is such that its Euler-Lagrange equations Ei(L) = 0 have the same set of solutions as Ei(L0) = 0, where L0 = g1/2F ijFij, then L and cL0 are equivalent for same constant c, i.e., Ei(L) = Ei(cL0). F...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: López, M.C., Noriega, R.J., Schifini, C.G.
Formato: JOUR
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00222488_v32_n8_p2063_Lopez
Aporte de:
id todo:paper_00222488_v32_n8_p2063_Lopez
record_format dspace
spelling todo:paper_00222488_v32_n8_p2063_Lopez2023-10-03T14:29:38Z Equivalence and s-equivalence of vector-tensor Lagrangians López, M.C. Noriega, R.J. Schifini, C.G. It will be proven that if a gauge-invariant Lagrangian density having the local form L = L(gij;Ai;Aij) is such that its Euler-Lagrange equations Ei(L) = 0 have the same set of solutions as Ei(L0) = 0, where L0 = g1/2F ijFij, then L and cL0 are equivalent for same constant c, i.e., Ei(L) = Ei(cL0). From a previous result it follows that L = cL0 + D + eg1/2, where D is a divergence and e is a constant. © 1991 American Institute of Physics. Fil:Noriega, R.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Schifini, C.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00222488_v32_n8_p2063_Lopez
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description It will be proven that if a gauge-invariant Lagrangian density having the local form L = L(gij;Ai;Aij) is such that its Euler-Lagrange equations Ei(L) = 0 have the same set of solutions as Ei(L0) = 0, where L0 = g1/2F ijFij, then L and cL0 are equivalent for same constant c, i.e., Ei(L) = Ei(cL0). From a previous result it follows that L = cL0 + D + eg1/2, where D is a divergence and e is a constant. © 1991 American Institute of Physics.
format JOUR
author López, M.C.
Noriega, R.J.
Schifini, C.G.
spellingShingle López, M.C.
Noriega, R.J.
Schifini, C.G.
Equivalence and s-equivalence of vector-tensor Lagrangians
author_facet López, M.C.
Noriega, R.J.
Schifini, C.G.
author_sort López, M.C.
title Equivalence and s-equivalence of vector-tensor Lagrangians
title_short Equivalence and s-equivalence of vector-tensor Lagrangians
title_full Equivalence and s-equivalence of vector-tensor Lagrangians
title_fullStr Equivalence and s-equivalence of vector-tensor Lagrangians
title_full_unstemmed Equivalence and s-equivalence of vector-tensor Lagrangians
title_sort equivalence and s-equivalence of vector-tensor lagrangians
url http://hdl.handle.net/20.500.12110/paper_00222488_v32_n8_p2063_Lopez
work_keys_str_mv AT lopezmc equivalenceandsequivalenceofvectortensorlagrangians
AT noriegarj equivalenceandsequivalenceofvectortensorlagrangians
AT schifinicg equivalenceandsequivalenceofvectortensorlagrangians
_version_ 1807322039773560832