Small Furstenberg sets

For α in (0, 1], a subset E of R2 is called a Furstenberg set of type α or Fα-set if for each direction e in the unit circle there is a line segment ℓe in the direction of e such that the Hausdorff dimension of the set E∩ℓe is greater than or equal to α. In this paper we use generalized Hausdorff me...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Molter, U., Rela, E.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_0022247X_v400_n2_p475_Molter
Aporte de:
id todo:paper_0022247X_v400_n2_p475_Molter
record_format dspace
spelling todo:paper_0022247X_v400_n2_p475_Molter2023-10-03T14:29:19Z Small Furstenberg sets Molter, U. Rela, E. Dimension function Furstenberg sets Hausdorff dimension Jarník's theorems For α in (0, 1], a subset E of R2 is called a Furstenberg set of type α or Fα-set if for each direction e in the unit circle there is a line segment ℓe in the direction of e such that the Hausdorff dimension of the set E∩ℓe is greater than or equal to α. In this paper we use generalized Hausdorff measures to give estimates on the size of these sets. Our main result is to obtain a sharp dimension estimate for a whole class of zero-dimensional Furstenberg type sets. Namely, for hγ(x)=log-γ(1x), γ>0, we construct a set Eγ∈Fhγ of Hausdorff dimension not greater than 12. Since in a previous work we showed that 12 is a lower bound for the Hausdorff dimension of any E∈Fhγ, with the present construction, the value 12 is sharp for the whole class of Furstenberg sets associated to the zero dimensional functionshγ. © 2012 Elsevier Ltd. Fil:Molter, U. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Rela, E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_0022247X_v400_n2_p475_Molter
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Dimension function
Furstenberg sets
Hausdorff dimension
Jarník's theorems
spellingShingle Dimension function
Furstenberg sets
Hausdorff dimension
Jarník's theorems
Molter, U.
Rela, E.
Small Furstenberg sets
topic_facet Dimension function
Furstenberg sets
Hausdorff dimension
Jarník's theorems
description For α in (0, 1], a subset E of R2 is called a Furstenberg set of type α or Fα-set if for each direction e in the unit circle there is a line segment ℓe in the direction of e such that the Hausdorff dimension of the set E∩ℓe is greater than or equal to α. In this paper we use generalized Hausdorff measures to give estimates on the size of these sets. Our main result is to obtain a sharp dimension estimate for a whole class of zero-dimensional Furstenberg type sets. Namely, for hγ(x)=log-γ(1x), γ>0, we construct a set Eγ∈Fhγ of Hausdorff dimension not greater than 12. Since in a previous work we showed that 12 is a lower bound for the Hausdorff dimension of any E∈Fhγ, with the present construction, the value 12 is sharp for the whole class of Furstenberg sets associated to the zero dimensional functionshγ. © 2012 Elsevier Ltd.
format JOUR
author Molter, U.
Rela, E.
author_facet Molter, U.
Rela, E.
author_sort Molter, U.
title Small Furstenberg sets
title_short Small Furstenberg sets
title_full Small Furstenberg sets
title_fullStr Small Furstenberg sets
title_full_unstemmed Small Furstenberg sets
title_sort small furstenberg sets
url http://hdl.handle.net/20.500.12110/paper_0022247X_v400_n2_p475_Molter
work_keys_str_mv AT molteru smallfurstenbergsets
AT relae smallfurstenbergsets
_version_ 1807319642265354240