Small Furstenberg sets
For α in (0, 1], a subset E of R2 is called a Furstenberg set of type α or Fα-set if for each direction e in the unit circle there is a line segment ℓe in the direction of e such that the Hausdorff dimension of the set E∩ℓe is greater than or equal to α. In this paper we use generalized Hausdorff me...
Guardado en:
Autores principales: | , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_0022247X_v400_n2_p475_Molter |
Aporte de: |
id |
todo:paper_0022247X_v400_n2_p475_Molter |
---|---|
record_format |
dspace |
spelling |
todo:paper_0022247X_v400_n2_p475_Molter2023-10-03T14:29:19Z Small Furstenberg sets Molter, U. Rela, E. Dimension function Furstenberg sets Hausdorff dimension Jarník's theorems For α in (0, 1], a subset E of R2 is called a Furstenberg set of type α or Fα-set if for each direction e in the unit circle there is a line segment ℓe in the direction of e such that the Hausdorff dimension of the set E∩ℓe is greater than or equal to α. In this paper we use generalized Hausdorff measures to give estimates on the size of these sets. Our main result is to obtain a sharp dimension estimate for a whole class of zero-dimensional Furstenberg type sets. Namely, for hγ(x)=log-γ(1x), γ>0, we construct a set Eγ∈Fhγ of Hausdorff dimension not greater than 12. Since in a previous work we showed that 12 is a lower bound for the Hausdorff dimension of any E∈Fhγ, with the present construction, the value 12 is sharp for the whole class of Furstenberg sets associated to the zero dimensional functionshγ. © 2012 Elsevier Ltd. Fil:Molter, U. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Rela, E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_0022247X_v400_n2_p475_Molter |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Dimension function Furstenberg sets Hausdorff dimension Jarník's theorems |
spellingShingle |
Dimension function Furstenberg sets Hausdorff dimension Jarník's theorems Molter, U. Rela, E. Small Furstenberg sets |
topic_facet |
Dimension function Furstenberg sets Hausdorff dimension Jarník's theorems |
description |
For α in (0, 1], a subset E of R2 is called a Furstenberg set of type α or Fα-set if for each direction e in the unit circle there is a line segment ℓe in the direction of e such that the Hausdorff dimension of the set E∩ℓe is greater than or equal to α. In this paper we use generalized Hausdorff measures to give estimates on the size of these sets. Our main result is to obtain a sharp dimension estimate for a whole class of zero-dimensional Furstenberg type sets. Namely, for hγ(x)=log-γ(1x), γ>0, we construct a set Eγ∈Fhγ of Hausdorff dimension not greater than 12. Since in a previous work we showed that 12 is a lower bound for the Hausdorff dimension of any E∈Fhγ, with the present construction, the value 12 is sharp for the whole class of Furstenberg sets associated to the zero dimensional functionshγ. © 2012 Elsevier Ltd. |
format |
JOUR |
author |
Molter, U. Rela, E. |
author_facet |
Molter, U. Rela, E. |
author_sort |
Molter, U. |
title |
Small Furstenberg sets |
title_short |
Small Furstenberg sets |
title_full |
Small Furstenberg sets |
title_fullStr |
Small Furstenberg sets |
title_full_unstemmed |
Small Furstenberg sets |
title_sort |
small furstenberg sets |
url |
http://hdl.handle.net/20.500.12110/paper_0022247X_v400_n2_p475_Molter |
work_keys_str_mv |
AT molteru smallfurstenbergsets AT relae smallfurstenbergsets |
_version_ |
1807319642265354240 |