Refined asymptotics for eigenvalues on domains of infinite measure

In this work we study the asymptotic distribution of eigenvalues in one-dimensional open sets. The method of proof is rather elementary, based on the Dirichlet lattice points problem, which enable us to consider sets with infinite measure. Also, we derive some estimates for the spectral counting fun...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Bonder, J.F., Pinasco, J.P., Salort, A.M.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_0022247X_v371_n1_p41_Bonder
Aporte de:
id todo:paper_0022247X_v371_n1_p41_Bonder
record_format dspace
spelling todo:paper_0022247X_v371_n1_p41_Bonder2023-10-03T14:29:15Z Refined asymptotics for eigenvalues on domains of infinite measure Bonder, J.F. Pinasco, J.P. Salort, A.M. Eigenvalues Lattice points P-Laplace operator In this work we study the asymptotic distribution of eigenvalues in one-dimensional open sets. The method of proof is rather elementary, based on the Dirichlet lattice points problem, which enable us to consider sets with infinite measure. Also, we derive some estimates for the spectral counting function of the Laplace operator on unbounded two-dimensional domains. © 2010 Elsevier Inc. Fil:Pinasco, J.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Salort, A.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_0022247X_v371_n1_p41_Bonder
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Eigenvalues
Lattice points
P-Laplace operator
spellingShingle Eigenvalues
Lattice points
P-Laplace operator
Bonder, J.F.
Pinasco, J.P.
Salort, A.M.
Refined asymptotics for eigenvalues on domains of infinite measure
topic_facet Eigenvalues
Lattice points
P-Laplace operator
description In this work we study the asymptotic distribution of eigenvalues in one-dimensional open sets. The method of proof is rather elementary, based on the Dirichlet lattice points problem, which enable us to consider sets with infinite measure. Also, we derive some estimates for the spectral counting function of the Laplace operator on unbounded two-dimensional domains. © 2010 Elsevier Inc.
format JOUR
author Bonder, J.F.
Pinasco, J.P.
Salort, A.M.
author_facet Bonder, J.F.
Pinasco, J.P.
Salort, A.M.
author_sort Bonder, J.F.
title Refined asymptotics for eigenvalues on domains of infinite measure
title_short Refined asymptotics for eigenvalues on domains of infinite measure
title_full Refined asymptotics for eigenvalues on domains of infinite measure
title_fullStr Refined asymptotics for eigenvalues on domains of infinite measure
title_full_unstemmed Refined asymptotics for eigenvalues on domains of infinite measure
title_sort refined asymptotics for eigenvalues on domains of infinite measure
url http://hdl.handle.net/20.500.12110/paper_0022247X_v371_n1_p41_Bonder
work_keys_str_mv AT bonderjf refinedasymptoticsforeigenvaluesondomainsofinfinitemeasure
AT pinascojp refinedasymptoticsforeigenvaluesondomainsofinfinitemeasure
AT salortam refinedasymptoticsforeigenvaluesondomainsofinfinitemeasure
_version_ 1807323461110988800