Refined asymptotics for eigenvalues on domains of infinite measure
In this work we study the asymptotic distribution of eigenvalues in one-dimensional open sets. The method of proof is rather elementary, based on the Dirichlet lattice points problem, which enable us to consider sets with infinite measure. Also, we derive some estimates for the spectral counting fun...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_0022247X_v371_n1_p41_Bonder |
Aporte de: |
id |
todo:paper_0022247X_v371_n1_p41_Bonder |
---|---|
record_format |
dspace |
spelling |
todo:paper_0022247X_v371_n1_p41_Bonder2023-10-03T14:29:15Z Refined asymptotics for eigenvalues on domains of infinite measure Bonder, J.F. Pinasco, J.P. Salort, A.M. Eigenvalues Lattice points P-Laplace operator In this work we study the asymptotic distribution of eigenvalues in one-dimensional open sets. The method of proof is rather elementary, based on the Dirichlet lattice points problem, which enable us to consider sets with infinite measure. Also, we derive some estimates for the spectral counting function of the Laplace operator on unbounded two-dimensional domains. © 2010 Elsevier Inc. Fil:Pinasco, J.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Salort, A.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_0022247X_v371_n1_p41_Bonder |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Eigenvalues Lattice points P-Laplace operator |
spellingShingle |
Eigenvalues Lattice points P-Laplace operator Bonder, J.F. Pinasco, J.P. Salort, A.M. Refined asymptotics for eigenvalues on domains of infinite measure |
topic_facet |
Eigenvalues Lattice points P-Laplace operator |
description |
In this work we study the asymptotic distribution of eigenvalues in one-dimensional open sets. The method of proof is rather elementary, based on the Dirichlet lattice points problem, which enable us to consider sets with infinite measure. Also, we derive some estimates for the spectral counting function of the Laplace operator on unbounded two-dimensional domains. © 2010 Elsevier Inc. |
format |
JOUR |
author |
Bonder, J.F. Pinasco, J.P. Salort, A.M. |
author_facet |
Bonder, J.F. Pinasco, J.P. Salort, A.M. |
author_sort |
Bonder, J.F. |
title |
Refined asymptotics for eigenvalues on domains of infinite measure |
title_short |
Refined asymptotics for eigenvalues on domains of infinite measure |
title_full |
Refined asymptotics for eigenvalues on domains of infinite measure |
title_fullStr |
Refined asymptotics for eigenvalues on domains of infinite measure |
title_full_unstemmed |
Refined asymptotics for eigenvalues on domains of infinite measure |
title_sort |
refined asymptotics for eigenvalues on domains of infinite measure |
url |
http://hdl.handle.net/20.500.12110/paper_0022247X_v371_n1_p41_Bonder |
work_keys_str_mv |
AT bonderjf refinedasymptoticsforeigenvaluesondomainsofinfinitemeasure AT pinascojp refinedasymptoticsforeigenvaluesondomainsofinfinitemeasure AT salortam refinedasymptoticsforeigenvaluesondomainsofinfinitemeasure |
_version_ |
1807323461110988800 |