Extension of vector-valued integral polynomials
We study the extendibility of integral vector-valued polynomials on Banach spaces. We prove that an X-valued Pietsch-integral polynomial on E extends to an X-valued Pietsch-integral polynomial on any space F containing E, with the same integral norm. This is not the case for Grothendieck-integral po...
Guardado en:
Autores principales: | , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_0022247X_v307_n1_p77_Carando |
Aporte de: |
id |
todo:paper_0022247X_v307_n1_p77_Carando |
---|---|
record_format |
dspace |
spelling |
todo:paper_0022247X_v307_n1_p77_Carando2023-10-03T14:29:08Z Extension of vector-valued integral polynomials Carando, D. Lassalle, S. Extendibility Integral polynomials We study the extendibility of integral vector-valued polynomials on Banach spaces. We prove that an X-valued Pietsch-integral polynomial on E extends to an X-valued Pietsch-integral polynomial on any space F containing E, with the same integral norm. This is not the case for Grothendieck-integral polynomials: they do not always extend to X-valued Grothendieck-integral polynomials. However, they are extendible to X-valued polynomials. The Aron-Berner extension of an integral polynomial is also studied. A canonical integral representation is given for domains not containing ℓ1. © 2004 Elsevier Inc. All rights reserved. Fil:Carando, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Lassalle, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_0022247X_v307_n1_p77_Carando |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Extendibility Integral polynomials |
spellingShingle |
Extendibility Integral polynomials Carando, D. Lassalle, S. Extension of vector-valued integral polynomials |
topic_facet |
Extendibility Integral polynomials |
description |
We study the extendibility of integral vector-valued polynomials on Banach spaces. We prove that an X-valued Pietsch-integral polynomial on E extends to an X-valued Pietsch-integral polynomial on any space F containing E, with the same integral norm. This is not the case for Grothendieck-integral polynomials: they do not always extend to X-valued Grothendieck-integral polynomials. However, they are extendible to X-valued polynomials. The Aron-Berner extension of an integral polynomial is also studied. A canonical integral representation is given for domains not containing ℓ1. © 2004 Elsevier Inc. All rights reserved. |
format |
JOUR |
author |
Carando, D. Lassalle, S. |
author_facet |
Carando, D. Lassalle, S. |
author_sort |
Carando, D. |
title |
Extension of vector-valued integral polynomials |
title_short |
Extension of vector-valued integral polynomials |
title_full |
Extension of vector-valued integral polynomials |
title_fullStr |
Extension of vector-valued integral polynomials |
title_full_unstemmed |
Extension of vector-valued integral polynomials |
title_sort |
extension of vector-valued integral polynomials |
url |
http://hdl.handle.net/20.500.12110/paper_0022247X_v307_n1_p77_Carando |
work_keys_str_mv |
AT carandod extensionofvectorvaluedintegralpolynomials AT lassalles extensionofvectorvaluedintegralpolynomials |
_version_ |
1807318733814759424 |