Pure pairing modes in trapped fermion systems

We present numerical predictions for the shape of the pairing fluctuations in harmonically trapped atomic 6Li with two spin projections, based on the fluiddynamical description of cold fermions with pairing interactions. In previous works it has been shown that when the equilibrium of a symmetric mi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Capuzzi, P., Hernández, E.S., Szybisz, L.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00222291_v171_n3-4_p362_Capuzzi
Aporte de:
id todo:paper_00222291_v171_n3-4_p362_Capuzzi
record_format dspace
spelling todo:paper_00222291_v171_n3-4_p362_Capuzzi2023-10-03T14:28:41Z Pure pairing modes in trapped fermion systems Capuzzi, P. Hernández, E.S. Szybisz, L. Fermion superfluid Harmonic confinement Massive mode Pairing fluctuations Harmonic confinement Kinetic energy density Massive mode Numerical predictions Pairing fluctuations Particle kinetic energy Relaxation time scale Transport coefficient Heat flux Kinetic energy Kinetics Spin fluctuations Diffusion in liquids We present numerical predictions for the shape of the pairing fluctuations in harmonically trapped atomic 6Li with two spin projections, based on the fluiddynamical description of cold fermions with pairing interactions. In previous works it has been shown that when the equilibrium of a symmetric mixture is perturbed, the linearized fluiddynamic equations decouple into two sets, one containing the sound mode of fermion superfluids and the other the pairing mode. The latter corresponds to oscillations of the modulus of the complex gap and is driven by the kinetic energy densities of the particles and of the pairs. Assuming proportionality between the heat flux and the energy gradient, the particle kinetic energy undergoes a diffusive behavior and the diffusion parameter is the key parameter for the relaxation time scale. We examine a possible range of values for this parameter and find that the shape of the pairing oscillation is rather insensitive to the precise value of the transport coefficient. Moreover, the pairing fluctuation is largely confined to the center of the trap, and the energy of the pairing mode is consistent with the magnitude of the equilibrium gap. © Springer Science+Business Media, LLC 2012. Fil:Capuzzi, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Hernández, E.S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Szybisz, L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00222291_v171_n3-4_p362_Capuzzi
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Fermion superfluid
Harmonic confinement
Massive mode
Pairing fluctuations
Harmonic confinement
Kinetic energy density
Massive mode
Numerical predictions
Pairing fluctuations
Particle kinetic energy
Relaxation time scale
Transport coefficient
Heat flux
Kinetic energy
Kinetics
Spin fluctuations
Diffusion in liquids
spellingShingle Fermion superfluid
Harmonic confinement
Massive mode
Pairing fluctuations
Harmonic confinement
Kinetic energy density
Massive mode
Numerical predictions
Pairing fluctuations
Particle kinetic energy
Relaxation time scale
Transport coefficient
Heat flux
Kinetic energy
Kinetics
Spin fluctuations
Diffusion in liquids
Capuzzi, P.
Hernández, E.S.
Szybisz, L.
Pure pairing modes in trapped fermion systems
topic_facet Fermion superfluid
Harmonic confinement
Massive mode
Pairing fluctuations
Harmonic confinement
Kinetic energy density
Massive mode
Numerical predictions
Pairing fluctuations
Particle kinetic energy
Relaxation time scale
Transport coefficient
Heat flux
Kinetic energy
Kinetics
Spin fluctuations
Diffusion in liquids
description We present numerical predictions for the shape of the pairing fluctuations in harmonically trapped atomic 6Li with two spin projections, based on the fluiddynamical description of cold fermions with pairing interactions. In previous works it has been shown that when the equilibrium of a symmetric mixture is perturbed, the linearized fluiddynamic equations decouple into two sets, one containing the sound mode of fermion superfluids and the other the pairing mode. The latter corresponds to oscillations of the modulus of the complex gap and is driven by the kinetic energy densities of the particles and of the pairs. Assuming proportionality between the heat flux and the energy gradient, the particle kinetic energy undergoes a diffusive behavior and the diffusion parameter is the key parameter for the relaxation time scale. We examine a possible range of values for this parameter and find that the shape of the pairing oscillation is rather insensitive to the precise value of the transport coefficient. Moreover, the pairing fluctuation is largely confined to the center of the trap, and the energy of the pairing mode is consistent with the magnitude of the equilibrium gap. © Springer Science+Business Media, LLC 2012.
format JOUR
author Capuzzi, P.
Hernández, E.S.
Szybisz, L.
author_facet Capuzzi, P.
Hernández, E.S.
Szybisz, L.
author_sort Capuzzi, P.
title Pure pairing modes in trapped fermion systems
title_short Pure pairing modes in trapped fermion systems
title_full Pure pairing modes in trapped fermion systems
title_fullStr Pure pairing modes in trapped fermion systems
title_full_unstemmed Pure pairing modes in trapped fermion systems
title_sort pure pairing modes in trapped fermion systems
url http://hdl.handle.net/20.500.12110/paper_00222291_v171_n3-4_p362_Capuzzi
work_keys_str_mv AT capuzzip purepairingmodesintrappedfermionsystems
AT hernandezes purepairingmodesintrappedfermionsystems
AT szybiszl purepairingmodesintrappedfermionsystems
_version_ 1807321533495902208