Geometry of integral polynomials, M-ideals and unique norm preserving extensions
We use the Aron-Berner extension to prove that the set of extreme points of the unit ball of the space of integral k-homogeneous polynomials over a real Banach space X is {±φ k:φ∈X *, ||φ||=1}. With this description we show that, for real Banach spaces X and Y, if X is a nontrivial M-ideal in Y, the...
Guardado en:
Autores principales: | Dimant, V., Galicer, D., García, R. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00221236_v262_n5_p1987_Dimant |
Aporte de: |
Ejemplares similares
-
Geometry of integral polynomials, M-ideals and unique norm preserving extensions
por: Dimant, Verónica, et al.
Publicado: (2012) -
Extending polynomials in maximal and minimal ideals
por: Carando, D., et al.
Publicado: (2010) -
Extending polynomials in maximal and minimal ideals
por: Carando, D., et al. -
Extending polynomials in maximal and minimal ideals
por: Carando, D., et al.
Publicado: (2010) -
Extending polynomials in maximal and minimal ideals
por: Carando, Daniel German, et al.
Publicado: (2010)