Atomic partition of the optical rotatory power of methylhydroperoxide

We applied a methodology capable of resolving the optical rotatory power into atomic contributions. The individual atomic contributions to the optical rotatory power and molecular chirality of the methylhydroperoxide are obtained via a canonical transformation of the Hamiltonian by which the electri...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sánchez, M., Ferraro, M.B., Alkorta, I., Elguero, J., Sauer, S.P.A.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00219606_v128_n6_p_Sanchez
Aporte de:
id todo:paper_00219606_v128_n6_p_Sanchez
record_format dspace
spelling todo:paper_00219606_v128_n6_p_Sanchez2023-10-03T14:24:14Z Atomic partition of the optical rotatory power of methylhydroperoxide Sánchez, M. Ferraro, M.B. Alkorta, I. Elguero, J. Sauer, S.P.A. Chirality Electric dipole moments Gaussian distribution Hamiltonians Magnetic moments Set theory Acceleration gauge formalism Methylhydroperoxide Optical rotatory power Optical rotation hydrogen peroxide article chemical model chemistry magnetism optical rotation quantum theory Hydrogen Peroxide Magnetics Models, Chemical Optical Rotation Quantum Theory We applied a methodology capable of resolving the optical rotatory power into atomic contributions. The individual atomic contributions to the optical rotatory power and molecular chirality of the methylhydroperoxide are obtained via a canonical transformation of the Hamiltonian by which the electric dipolar moment operator is transformed to the acceleration gauge formalism and the magnetic dipolar moment operator to the torque formalism. The gross atomic isotropic contributions have been evaluated for the carbon, the nonequivalent oxygen, and the nonequivalent hydrogen atoms of methylhydroperoxide, employing a very large Gaussian basis set which is close to the Hartree-Fock limit. © 2008 American Institute of Physics. Fil:Ferraro, M.B. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00219606_v128_n6_p_Sanchez
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Chirality
Electric dipole moments
Gaussian distribution
Hamiltonians
Magnetic moments
Set theory
Acceleration gauge formalism
Methylhydroperoxide
Optical rotatory power
Optical rotation
hydrogen peroxide
article
chemical model
chemistry
magnetism
optical rotation
quantum theory
Hydrogen Peroxide
Magnetics
Models, Chemical
Optical Rotation
Quantum Theory
spellingShingle Chirality
Electric dipole moments
Gaussian distribution
Hamiltonians
Magnetic moments
Set theory
Acceleration gauge formalism
Methylhydroperoxide
Optical rotatory power
Optical rotation
hydrogen peroxide
article
chemical model
chemistry
magnetism
optical rotation
quantum theory
Hydrogen Peroxide
Magnetics
Models, Chemical
Optical Rotation
Quantum Theory
Sánchez, M.
Ferraro, M.B.
Alkorta, I.
Elguero, J.
Sauer, S.P.A.
Atomic partition of the optical rotatory power of methylhydroperoxide
topic_facet Chirality
Electric dipole moments
Gaussian distribution
Hamiltonians
Magnetic moments
Set theory
Acceleration gauge formalism
Methylhydroperoxide
Optical rotatory power
Optical rotation
hydrogen peroxide
article
chemical model
chemistry
magnetism
optical rotation
quantum theory
Hydrogen Peroxide
Magnetics
Models, Chemical
Optical Rotation
Quantum Theory
description We applied a methodology capable of resolving the optical rotatory power into atomic contributions. The individual atomic contributions to the optical rotatory power and molecular chirality of the methylhydroperoxide are obtained via a canonical transformation of the Hamiltonian by which the electric dipolar moment operator is transformed to the acceleration gauge formalism and the magnetic dipolar moment operator to the torque formalism. The gross atomic isotropic contributions have been evaluated for the carbon, the nonequivalent oxygen, and the nonequivalent hydrogen atoms of methylhydroperoxide, employing a very large Gaussian basis set which is close to the Hartree-Fock limit. © 2008 American Institute of Physics.
format JOUR
author Sánchez, M.
Ferraro, M.B.
Alkorta, I.
Elguero, J.
Sauer, S.P.A.
author_facet Sánchez, M.
Ferraro, M.B.
Alkorta, I.
Elguero, J.
Sauer, S.P.A.
author_sort Sánchez, M.
title Atomic partition of the optical rotatory power of methylhydroperoxide
title_short Atomic partition of the optical rotatory power of methylhydroperoxide
title_full Atomic partition of the optical rotatory power of methylhydroperoxide
title_fullStr Atomic partition of the optical rotatory power of methylhydroperoxide
title_full_unstemmed Atomic partition of the optical rotatory power of methylhydroperoxide
title_sort atomic partition of the optical rotatory power of methylhydroperoxide
url http://hdl.handle.net/20.500.12110/paper_00219606_v128_n6_p_Sanchez
work_keys_str_mv AT sanchezm atomicpartitionoftheopticalrotatorypowerofmethylhydroperoxide
AT ferraromb atomicpartitionoftheopticalrotatorypowerofmethylhydroperoxide
AT alkortai atomicpartitionoftheopticalrotatorypowerofmethylhydroperoxide
AT elgueroj atomicpartitionoftheopticalrotatorypowerofmethylhydroperoxide
AT sauerspa atomicpartitionoftheopticalrotatorypowerofmethylhydroperoxide
_version_ 1782030464268107776