Hypothyroid phenotype is contributed by mitochondrial complex I inactivation due to translocated neuronal nitric-oxide synthase

Although transcriptional effects of thyroid hormones have substantial influence on oxidative metabolism, how thyroid sets basal metabolic rate remains obscure. Compartmental localization of nitric-oxide synthases is important for nitric oxide signaling. We therefore examined liver neuronal nitric-ox...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Franco, M.C., Antico Arciuch, V.G., Peralta, J.G., Galli, S., Levisman, D., López, L.M., Romorini, L., Poderoso, J.J., Carreras, M.C.
Formato: JOUR
Materias:
RNA
rat
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00219258_v281_n8_p4779_Franco
Aporte de:
id todo:paper_00219258_v281_n8_p4779_Franco
record_format dspace
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Complexation
Hormones
Metabolism
Neurology
Oxides
Proteins
RNA
Hypothyroid
Mitochondria
Mitochondrial complex I
Neuronal nitric-oxide synthase
Nitric acid
3,3',5' triiodothyronine
cyclin D1
liver enzyme
messenger RNA
mitochondrial complex 1
mitogen activated protein kinase 1
mitogen activated protein kinase 3
mitogen activated protein kinase p38
n(g) nitroarginine methyl ester
neuronal nitric oxide synthase
neuronal nitric oxide synthase alpha
nitric oxide
oxidoreductase
peroxynitrite
reactive oxygen metabolite
reduced nicotinamide adenine dinucleotide dehydrogenase (ubiquinone)
thiamazole
thyrotropin
tyrosine
unclassified drug
cyclin D1
heat shock protein 90
isoprotein
messenger RNA
mitogen activated protein kinase p38
n(g) nitroarginine methyl ester
neuronal nitric oxide synthase
nitric oxide synthase
oxidizing agent
oxygen
peroxynitrous acid
reactive oxygen metabolite
reduced nicotinamide adenine dinucleotide dehydrogenase (ubiquinone)
thyroid hormone
animal cell
animal experiment
animal tissue
article
basal metabolic rate
cell communication
cellular distribution
controlled study
enzyme activity
enzyme inactivation
enzyme localization
hypothyroidism
liothyronine blood level
male
mitochondrial respiration
nitration
nonhuman
oxygen consumption
phenotype
priority journal
protein expression
protein transport
rat
signal transduction
animal
cell fractionation
chemical model
chemistry
cytosol
electron
enzymology
genetic transcription
hypothyroidism
immunoblotting
immunoelectron microscopy
immunoprecipitation
liver
liver mitochondrion
metabolism
mitochondrion
pathology
polyacrylamide gel electrophoresis
reverse transcription polymerase chain reaction
Wistar rat
Animals
Cyclin D1
Cytosol
Electron Transport Complex I
Electrons
Electrophoresis, Polyacrylamide Gel
HSP90 Heat-Shock Proteins
Hypothyroidism
Immunoblotting
Immunoprecipitation
Liver
Male
MAP Kinase Signaling System
Microscopy, Immunoelectron
Mitochondria
Mitochondria, Liver
Models, Chemical
NG-Nitroarginine Methyl Ester
Nitric Oxide Synthase
Nitric Oxide Synthase Type I
Oxidants
Oxygen
p38 Mitogen-Activated Protein Kinases
Peroxynitrous Acid
Phenotype
Protein Isoforms
Protein Transport
Rats
Rats, Wistar
Reactive Oxygen Species
Reverse Transcriptase Polymerase Chain Reaction
RNA, Messenger
Signal Transduction
Subcellular Fractions
Thyroid Hormones
Transcription, Genetic
spellingShingle Complexation
Hormones
Metabolism
Neurology
Oxides
Proteins
RNA
Hypothyroid
Mitochondria
Mitochondrial complex I
Neuronal nitric-oxide synthase
Nitric acid
3,3',5' triiodothyronine
cyclin D1
liver enzyme
messenger RNA
mitochondrial complex 1
mitogen activated protein kinase 1
mitogen activated protein kinase 3
mitogen activated protein kinase p38
n(g) nitroarginine methyl ester
neuronal nitric oxide synthase
neuronal nitric oxide synthase alpha
nitric oxide
oxidoreductase
peroxynitrite
reactive oxygen metabolite
reduced nicotinamide adenine dinucleotide dehydrogenase (ubiquinone)
thiamazole
thyrotropin
tyrosine
unclassified drug
cyclin D1
heat shock protein 90
isoprotein
messenger RNA
mitogen activated protein kinase p38
n(g) nitroarginine methyl ester
neuronal nitric oxide synthase
nitric oxide synthase
oxidizing agent
oxygen
peroxynitrous acid
reactive oxygen metabolite
reduced nicotinamide adenine dinucleotide dehydrogenase (ubiquinone)
thyroid hormone
animal cell
animal experiment
animal tissue
article
basal metabolic rate
cell communication
cellular distribution
controlled study
enzyme activity
enzyme inactivation
enzyme localization
hypothyroidism
liothyronine blood level
male
mitochondrial respiration
nitration
nonhuman
oxygen consumption
phenotype
priority journal
protein expression
protein transport
rat
signal transduction
animal
cell fractionation
chemical model
chemistry
cytosol
electron
enzymology
genetic transcription
hypothyroidism
immunoblotting
immunoelectron microscopy
immunoprecipitation
liver
liver mitochondrion
metabolism
mitochondrion
pathology
polyacrylamide gel electrophoresis
reverse transcription polymerase chain reaction
Wistar rat
Animals
Cyclin D1
Cytosol
Electron Transport Complex I
Electrons
Electrophoresis, Polyacrylamide Gel
HSP90 Heat-Shock Proteins
Hypothyroidism
Immunoblotting
Immunoprecipitation
Liver
Male
MAP Kinase Signaling System
Microscopy, Immunoelectron
Mitochondria
Mitochondria, Liver
Models, Chemical
NG-Nitroarginine Methyl Ester
Nitric Oxide Synthase
Nitric Oxide Synthase Type I
Oxidants
Oxygen
p38 Mitogen-Activated Protein Kinases
Peroxynitrous Acid
Phenotype
Protein Isoforms
Protein Transport
Rats
Rats, Wistar
Reactive Oxygen Species
Reverse Transcriptase Polymerase Chain Reaction
RNA, Messenger
Signal Transduction
Subcellular Fractions
Thyroid Hormones
Transcription, Genetic
Franco, M.C.
Antico Arciuch, V.G.
Peralta, J.G.
Galli, S.
Levisman, D.
López, L.M.
Romorini, L.
Poderoso, J.J.
Carreras, M.C.
Hypothyroid phenotype is contributed by mitochondrial complex I inactivation due to translocated neuronal nitric-oxide synthase
topic_facet Complexation
Hormones
Metabolism
Neurology
Oxides
Proteins
RNA
Hypothyroid
Mitochondria
Mitochondrial complex I
Neuronal nitric-oxide synthase
Nitric acid
3,3',5' triiodothyronine
cyclin D1
liver enzyme
messenger RNA
mitochondrial complex 1
mitogen activated protein kinase 1
mitogen activated protein kinase 3
mitogen activated protein kinase p38
n(g) nitroarginine methyl ester
neuronal nitric oxide synthase
neuronal nitric oxide synthase alpha
nitric oxide
oxidoreductase
peroxynitrite
reactive oxygen metabolite
reduced nicotinamide adenine dinucleotide dehydrogenase (ubiquinone)
thiamazole
thyrotropin
tyrosine
unclassified drug
cyclin D1
heat shock protein 90
isoprotein
messenger RNA
mitogen activated protein kinase p38
n(g) nitroarginine methyl ester
neuronal nitric oxide synthase
nitric oxide synthase
oxidizing agent
oxygen
peroxynitrous acid
reactive oxygen metabolite
reduced nicotinamide adenine dinucleotide dehydrogenase (ubiquinone)
thyroid hormone
animal cell
animal experiment
animal tissue
article
basal metabolic rate
cell communication
cellular distribution
controlled study
enzyme activity
enzyme inactivation
enzyme localization
hypothyroidism
liothyronine blood level
male
mitochondrial respiration
nitration
nonhuman
oxygen consumption
phenotype
priority journal
protein expression
protein transport
rat
signal transduction
animal
cell fractionation
chemical model
chemistry
cytosol
electron
enzymology
genetic transcription
hypothyroidism
immunoblotting
immunoelectron microscopy
immunoprecipitation
liver
liver mitochondrion
metabolism
mitochondrion
pathology
polyacrylamide gel electrophoresis
reverse transcription polymerase chain reaction
Wistar rat
Animals
Cyclin D1
Cytosol
Electron Transport Complex I
Electrons
Electrophoresis, Polyacrylamide Gel
HSP90 Heat-Shock Proteins
Hypothyroidism
Immunoblotting
Immunoprecipitation
Liver
Male
MAP Kinase Signaling System
Microscopy, Immunoelectron
Mitochondria
Mitochondria, Liver
Models, Chemical
NG-Nitroarginine Methyl Ester
Nitric Oxide Synthase
Nitric Oxide Synthase Type I
Oxidants
Oxygen
p38 Mitogen-Activated Protein Kinases
Peroxynitrous Acid
Phenotype
Protein Isoforms
Protein Transport
Rats
Rats, Wistar
Reactive Oxygen Species
Reverse Transcriptase Polymerase Chain Reaction
RNA, Messenger
Signal Transduction
Subcellular Fractions
Thyroid Hormones
Transcription, Genetic
description Although transcriptional effects of thyroid hormones have substantial influence on oxidative metabolism, how thyroid sets basal metabolic rate remains obscure. Compartmental localization of nitric-oxide synthases is important for nitric oxide signaling. We therefore examined liver neuronal nitric-oxide synthase-α (nNOS) subcellular distribution as a putative mechanism for thyroid effects on rat metabolic rate. At low 3,3′,5-triiodo-L-thyronine levels, nNOS mRNA increased by 3-fold, protein expression by one-fold, and nNOS was selectively translocated to mitochondria without changes in other isoforms. In contrast, under thyroid hormone administration, mRNA level did not change and nNOS remained predominantly localized in cytosol. In hypothyroidism, nNOS translocation resulted in enhanced mitochondrial nitric-oxide synthase activity with low O2 uptake. In this context, NO utilization increased active O2 species and peroxynitrite yields and tyrosine nitration of complex I proteins that reduced complex activity. Hypothyroidism was also associated to high phospho-p38 mitogen-activated protein kinase and decreased phospho-extracellular signal-regulated kinase 1/2 and cyclin D1 levels. Similarly to thyroid hormones, but without changing thyroid status, nitric-oxide synthase inhibitor Nω-nitro-L-arginine methyl ester increased basal metabolic rate, prevented mitochondrial nitration and complex I derangement, and turned mitogen-activated protein kinase signaling and cyclin D1 expression back to control pattern. We surmise that nNOS spatial confinement in mitochondria is a significant downstream effector of thyroid hormone and hypothyroid phenotype. © 2006 by The American Society for Biochemistry and Molecular Biology, Inc.
format JOUR
author Franco, M.C.
Antico Arciuch, V.G.
Peralta, J.G.
Galli, S.
Levisman, D.
López, L.M.
Romorini, L.
Poderoso, J.J.
Carreras, M.C.
author_facet Franco, M.C.
Antico Arciuch, V.G.
Peralta, J.G.
Galli, S.
Levisman, D.
López, L.M.
Romorini, L.
Poderoso, J.J.
Carreras, M.C.
author_sort Franco, M.C.
title Hypothyroid phenotype is contributed by mitochondrial complex I inactivation due to translocated neuronal nitric-oxide synthase
title_short Hypothyroid phenotype is contributed by mitochondrial complex I inactivation due to translocated neuronal nitric-oxide synthase
title_full Hypothyroid phenotype is contributed by mitochondrial complex I inactivation due to translocated neuronal nitric-oxide synthase
title_fullStr Hypothyroid phenotype is contributed by mitochondrial complex I inactivation due to translocated neuronal nitric-oxide synthase
title_full_unstemmed Hypothyroid phenotype is contributed by mitochondrial complex I inactivation due to translocated neuronal nitric-oxide synthase
title_sort hypothyroid phenotype is contributed by mitochondrial complex i inactivation due to translocated neuronal nitric-oxide synthase
url http://hdl.handle.net/20.500.12110/paper_00219258_v281_n8_p4779_Franco
work_keys_str_mv AT francomc hypothyroidphenotypeiscontributedbymitochondrialcomplexiinactivationduetotranslocatedneuronalnitricoxidesynthase
AT anticoarciuchvg hypothyroidphenotypeiscontributedbymitochondrialcomplexiinactivationduetotranslocatedneuronalnitricoxidesynthase
AT peraltajg hypothyroidphenotypeiscontributedbymitochondrialcomplexiinactivationduetotranslocatedneuronalnitricoxidesynthase
AT gallis hypothyroidphenotypeiscontributedbymitochondrialcomplexiinactivationduetotranslocatedneuronalnitricoxidesynthase
AT levismand hypothyroidphenotypeiscontributedbymitochondrialcomplexiinactivationduetotranslocatedneuronalnitricoxidesynthase
AT lopezlm hypothyroidphenotypeiscontributedbymitochondrialcomplexiinactivationduetotranslocatedneuronalnitricoxidesynthase
AT romorinil hypothyroidphenotypeiscontributedbymitochondrialcomplexiinactivationduetotranslocatedneuronalnitricoxidesynthase
AT poderosojj hypothyroidphenotypeiscontributedbymitochondrialcomplexiinactivationduetotranslocatedneuronalnitricoxidesynthase
AT carrerasmc hypothyroidphenotypeiscontributedbymitochondrialcomplexiinactivationduetotranslocatedneuronalnitricoxidesynthase
_version_ 1782025203873742848
spelling todo:paper_00219258_v281_n8_p4779_Franco2023-10-03T14:23:11Z Hypothyroid phenotype is contributed by mitochondrial complex I inactivation due to translocated neuronal nitric-oxide synthase Franco, M.C. Antico Arciuch, V.G. Peralta, J.G. Galli, S. Levisman, D. López, L.M. Romorini, L. Poderoso, J.J. Carreras, M.C. Complexation Hormones Metabolism Neurology Oxides Proteins RNA Hypothyroid Mitochondria Mitochondrial complex I Neuronal nitric-oxide synthase Nitric acid 3,3',5' triiodothyronine cyclin D1 liver enzyme messenger RNA mitochondrial complex 1 mitogen activated protein kinase 1 mitogen activated protein kinase 3 mitogen activated protein kinase p38 n(g) nitroarginine methyl ester neuronal nitric oxide synthase neuronal nitric oxide synthase alpha nitric oxide oxidoreductase peroxynitrite reactive oxygen metabolite reduced nicotinamide adenine dinucleotide dehydrogenase (ubiquinone) thiamazole thyrotropin tyrosine unclassified drug cyclin D1 heat shock protein 90 isoprotein messenger RNA mitogen activated protein kinase p38 n(g) nitroarginine methyl ester neuronal nitric oxide synthase nitric oxide synthase oxidizing agent oxygen peroxynitrous acid reactive oxygen metabolite reduced nicotinamide adenine dinucleotide dehydrogenase (ubiquinone) thyroid hormone animal cell animal experiment animal tissue article basal metabolic rate cell communication cellular distribution controlled study enzyme activity enzyme inactivation enzyme localization hypothyroidism liothyronine blood level male mitochondrial respiration nitration nonhuman oxygen consumption phenotype priority journal protein expression protein transport rat signal transduction animal cell fractionation chemical model chemistry cytosol electron enzymology genetic transcription hypothyroidism immunoblotting immunoelectron microscopy immunoprecipitation liver liver mitochondrion metabolism mitochondrion pathology polyacrylamide gel electrophoresis reverse transcription polymerase chain reaction Wistar rat Animals Cyclin D1 Cytosol Electron Transport Complex I Electrons Electrophoresis, Polyacrylamide Gel HSP90 Heat-Shock Proteins Hypothyroidism Immunoblotting Immunoprecipitation Liver Male MAP Kinase Signaling System Microscopy, Immunoelectron Mitochondria Mitochondria, Liver Models, Chemical NG-Nitroarginine Methyl Ester Nitric Oxide Synthase Nitric Oxide Synthase Type I Oxidants Oxygen p38 Mitogen-Activated Protein Kinases Peroxynitrous Acid Phenotype Protein Isoforms Protein Transport Rats Rats, Wistar Reactive Oxygen Species Reverse Transcriptase Polymerase Chain Reaction RNA, Messenger Signal Transduction Subcellular Fractions Thyroid Hormones Transcription, Genetic Although transcriptional effects of thyroid hormones have substantial influence on oxidative metabolism, how thyroid sets basal metabolic rate remains obscure. Compartmental localization of nitric-oxide synthases is important for nitric oxide signaling. We therefore examined liver neuronal nitric-oxide synthase-α (nNOS) subcellular distribution as a putative mechanism for thyroid effects on rat metabolic rate. At low 3,3′,5-triiodo-L-thyronine levels, nNOS mRNA increased by 3-fold, protein expression by one-fold, and nNOS was selectively translocated to mitochondria without changes in other isoforms. In contrast, under thyroid hormone administration, mRNA level did not change and nNOS remained predominantly localized in cytosol. In hypothyroidism, nNOS translocation resulted in enhanced mitochondrial nitric-oxide synthase activity with low O2 uptake. In this context, NO utilization increased active O2 species and peroxynitrite yields and tyrosine nitration of complex I proteins that reduced complex activity. Hypothyroidism was also associated to high phospho-p38 mitogen-activated protein kinase and decreased phospho-extracellular signal-regulated kinase 1/2 and cyclin D1 levels. Similarly to thyroid hormones, but without changing thyroid status, nitric-oxide synthase inhibitor Nω-nitro-L-arginine methyl ester increased basal metabolic rate, prevented mitochondrial nitration and complex I derangement, and turned mitogen-activated protein kinase signaling and cyclin D1 expression back to control pattern. We surmise that nNOS spatial confinement in mitochondria is a significant downstream effector of thyroid hormone and hypothyroid phenotype. © 2006 by The American Society for Biochemistry and Molecular Biology, Inc. Fil:Franco, M.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Antico Arciuch, V.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Galli, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Romorini, L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00219258_v281_n8_p4779_Franco