Automorphism groups of finite posets
For any finite group G, we construct a finite poset (or equivalently, a finite T0-space) X, whose group of automorphisms is isomorphic to G. If the order of the group is n and it has r generators, X has n (r + 2) points. This construction improves previous results by G. Birkhoff and M.C. Thornton. T...
Guardado en:
Autores principales: | Barmak, J.A., Minian, E.G. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_0012365X_v309_n10_p3424_Barmak |
Aporte de: |
Ejemplares similares
-
Automorphism groups of finite posets
por: Barmak, Jonathan A., et al.
Publicado: (2009) -
The homotopy types of the posets of p-subgroups of a finite group
por: Minian, E.G., et al. -
The homotopy types of the posets of p-subgroups of a finite group
Publicado: (2018) -
2-Dimension from the topological viewpoint
por: Barmak, J.A., et al. -
Homotopy colimits of diagrams over posets and variations on a theorem of Thomason
por: Fernández, X., et al.