Automorphism groups of finite posets

For any finite group G, we construct a finite poset (or equivalently, a finite T0-space) X, whose group of automorphisms is isomorphic to G. If the order of the group is n and it has r generators, X has n (r + 2) points. This construction improves previous results by G. Birkhoff and M.C. Thornton. T...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Barmak, J.A., Minian, E.G.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_0012365X_v309_n10_p3424_Barmak
Aporte de:
id todo:paper_0012365X_v309_n10_p3424_Barmak
record_format dspace
spelling todo:paper_0012365X_v309_n10_p3424_Barmak2023-10-03T14:10:21Z Automorphism groups of finite posets Barmak, J.A. Minian, E.G. Automorphisms Finite topological spaces Posets Automorphism groups Automorphisms Finite groups Finite poset Finite topological spaces Group of automorphisms Homotopy types Posets For any finite group G, we construct a finite poset (or equivalently, a finite T0-space) X, whose group of automorphisms is isomorphic to G. If the order of the group is n and it has r generators, X has n (r + 2) points. This construction improves previous results by G. Birkhoff and M.C. Thornton. The relationship between automorphisms and homotopy types is also analyzed. © 2008 Elsevier B.V. All rights reserved. Fil:Barmak, J.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Minian, E.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_0012365X_v309_n10_p3424_Barmak
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Automorphisms
Finite topological spaces
Posets
Automorphism groups
Automorphisms
Finite groups
Finite poset
Finite topological spaces
Group of automorphisms
Homotopy types
Posets
spellingShingle Automorphisms
Finite topological spaces
Posets
Automorphism groups
Automorphisms
Finite groups
Finite poset
Finite topological spaces
Group of automorphisms
Homotopy types
Posets
Barmak, J.A.
Minian, E.G.
Automorphism groups of finite posets
topic_facet Automorphisms
Finite topological spaces
Posets
Automorphism groups
Automorphisms
Finite groups
Finite poset
Finite topological spaces
Group of automorphisms
Homotopy types
Posets
description For any finite group G, we construct a finite poset (or equivalently, a finite T0-space) X, whose group of automorphisms is isomorphic to G. If the order of the group is n and it has r generators, X has n (r + 2) points. This construction improves previous results by G. Birkhoff and M.C. Thornton. The relationship between automorphisms and homotopy types is also analyzed. © 2008 Elsevier B.V. All rights reserved.
format JOUR
author Barmak, J.A.
Minian, E.G.
author_facet Barmak, J.A.
Minian, E.G.
author_sort Barmak, J.A.
title Automorphism groups of finite posets
title_short Automorphism groups of finite posets
title_full Automorphism groups of finite posets
title_fullStr Automorphism groups of finite posets
title_full_unstemmed Automorphism groups of finite posets
title_sort automorphism groups of finite posets
url http://hdl.handle.net/20.500.12110/paper_0012365X_v309_n10_p3424_Barmak
work_keys_str_mv AT barmakja automorphismgroupsoffiniteposets
AT minianeg automorphismgroupsoffiniteposets
_version_ 1807316057713541120