Extended connection in Yang-Mills theory
The three fundamental geometric components of Yang-Mills theory -gauge field, gauge fixing and ghost field- are unified in a new object: an extended connection in a properly chosen principal fiber bundle. To do this, it is necessary to generalize the notion of gauge fixing by using a gauge fixing co...
Guardado en:
Autores principales: | , |
---|---|
Formato: | JOUR |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00103616_v284_n1_p93_Catren |
Aporte de: |
id |
todo:paper_00103616_v284_n1_p93_Catren |
---|---|
record_format |
dspace |
spelling |
todo:paper_00103616_v284_n1_p93_Catren2023-10-03T14:09:01Z Extended connection in Yang-Mills theory Catren, G. Devoto, J. The three fundamental geometric components of Yang-Mills theory -gauge field, gauge fixing and ghost field- are unified in a new object: an extended connection in a properly chosen principal fiber bundle. To do this, it is necessary to generalize the notion of gauge fixing by using a gauge fixing connection instead of a section. From the equations for the extended connection's curvature, we derive the relevant BRST transformations without imposing the usual horizontality conditions. We show that the gauge field's standard BRST transformation is only valid in a local trivialization and we obtain the corresponding global generalization. By using the Faddeev-Popov method, we apply the generalized gauge fixing to the path integral quantization of Yang-Mills theory. We show that the proposed gauge fixing can be used even in the presence of a Gribov's obstruction. © 2008 Springer-Verlag. Fil:Catren, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Devoto, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00103616_v284_n1_p93_Catren |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
description |
The three fundamental geometric components of Yang-Mills theory -gauge field, gauge fixing and ghost field- are unified in a new object: an extended connection in a properly chosen principal fiber bundle. To do this, it is necessary to generalize the notion of gauge fixing by using a gauge fixing connection instead of a section. From the equations for the extended connection's curvature, we derive the relevant BRST transformations without imposing the usual horizontality conditions. We show that the gauge field's standard BRST transformation is only valid in a local trivialization and we obtain the corresponding global generalization. By using the Faddeev-Popov method, we apply the generalized gauge fixing to the path integral quantization of Yang-Mills theory. We show that the proposed gauge fixing can be used even in the presence of a Gribov's obstruction. © 2008 Springer-Verlag. |
format |
JOUR |
author |
Catren, G. Devoto, J. |
spellingShingle |
Catren, G. Devoto, J. Extended connection in Yang-Mills theory |
author_facet |
Catren, G. Devoto, J. |
author_sort |
Catren, G. |
title |
Extended connection in Yang-Mills theory |
title_short |
Extended connection in Yang-Mills theory |
title_full |
Extended connection in Yang-Mills theory |
title_fullStr |
Extended connection in Yang-Mills theory |
title_full_unstemmed |
Extended connection in Yang-Mills theory |
title_sort |
extended connection in yang-mills theory |
url |
http://hdl.handle.net/20.500.12110/paper_00103616_v284_n1_p93_Catren |
work_keys_str_mv |
AT catreng extendedconnectioninyangmillstheory AT devotoj extendedconnectioninyangmillstheory |
_version_ |
1807314820843700224 |