Extended connection in Yang-Mills theory

The three fundamental geometric components of Yang-Mills theory -gauge field, gauge fixing and ghost field- are unified in a new object: an extended connection in a properly chosen principal fiber bundle. To do this, it is necessary to generalize the notion of gauge fixing by using a gauge fixing co...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Catren, G., Devoto, J.
Formato: JOUR
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00103616_v284_n1_p93_Catren
Aporte de:
id todo:paper_00103616_v284_n1_p93_Catren
record_format dspace
spelling todo:paper_00103616_v284_n1_p93_Catren2023-10-03T14:09:01Z Extended connection in Yang-Mills theory Catren, G. Devoto, J. The three fundamental geometric components of Yang-Mills theory -gauge field, gauge fixing and ghost field- are unified in a new object: an extended connection in a properly chosen principal fiber bundle. To do this, it is necessary to generalize the notion of gauge fixing by using a gauge fixing connection instead of a section. From the equations for the extended connection's curvature, we derive the relevant BRST transformations without imposing the usual horizontality conditions. We show that the gauge field's standard BRST transformation is only valid in a local trivialization and we obtain the corresponding global generalization. By using the Faddeev-Popov method, we apply the generalized gauge fixing to the path integral quantization of Yang-Mills theory. We show that the proposed gauge fixing can be used even in the presence of a Gribov's obstruction. © 2008 Springer-Verlag. Fil:Catren, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Devoto, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00103616_v284_n1_p93_Catren
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description The three fundamental geometric components of Yang-Mills theory -gauge field, gauge fixing and ghost field- are unified in a new object: an extended connection in a properly chosen principal fiber bundle. To do this, it is necessary to generalize the notion of gauge fixing by using a gauge fixing connection instead of a section. From the equations for the extended connection's curvature, we derive the relevant BRST transformations without imposing the usual horizontality conditions. We show that the gauge field's standard BRST transformation is only valid in a local trivialization and we obtain the corresponding global generalization. By using the Faddeev-Popov method, we apply the generalized gauge fixing to the path integral quantization of Yang-Mills theory. We show that the proposed gauge fixing can be used even in the presence of a Gribov's obstruction. © 2008 Springer-Verlag.
format JOUR
author Catren, G.
Devoto, J.
spellingShingle Catren, G.
Devoto, J.
Extended connection in Yang-Mills theory
author_facet Catren, G.
Devoto, J.
author_sort Catren, G.
title Extended connection in Yang-Mills theory
title_short Extended connection in Yang-Mills theory
title_full Extended connection in Yang-Mills theory
title_fullStr Extended connection in Yang-Mills theory
title_full_unstemmed Extended connection in Yang-Mills theory
title_sort extended connection in yang-mills theory
url http://hdl.handle.net/20.500.12110/paper_00103616_v284_n1_p93_Catren
work_keys_str_mv AT catreng extendedconnectioninyangmillstheory
AT devotoj extendedconnectioninyangmillstheory
_version_ 1807314820843700224