Development of a trielectrode plasma curtain at atmospheric pressure

The development of a nonequilibrium, low-power, trielectrode plasma curtain at atmospheric pressure is presented. The discharge is based on the combination of an ac dielectric barrier discharge with a dc corona discharge in a three electrode system, and can be sustained for large time periods and ov...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Zastawny, H., Sosa, R., Grondona, D., Márquez, A., Artana, G., Kelly, H.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00036951_v93_n3_p_Zastawny
Aporte de:
id todo:paper_00036951_v93_n3_p_Zastawny
record_format dspace
spelling todo:paper_00036951_v93_n3_p_Zastawny2023-10-03T13:56:37Z Development of a trielectrode plasma curtain at atmospheric pressure Zastawny, H. Sosa, R. Grondona, D. Márquez, A. Artana, G. Kelly, H. Atmospheric pressure Atmospherics Climatology Discharge (fluid mechanics) Electric corona Electrolysis Fluid mechanics Metallizing Meteorology Plasmas Air gaps American Institute of Physics (AIP) DC corona discharge Dielectric barrier discharge (DBD) Electrode lengths Interelectrode Low powers Non equilibrium Repetition frequencies Three-electrode systems Time periods Electric discharges The development of a nonequilibrium, low-power, trielectrode plasma curtain at atmospheric pressure is presented. The discharge is based on the combination of an ac dielectric barrier discharge with a dc corona discharge in a three electrode system, and can be sustained for large time periods and over interelectrode air gaps up to 20 mm and with an electrode length of ∼10 cm in the transversal direction. The discharge is composed of a train of streamers, with a repetition frequency in the range 50-200 kHz, and carrying an average current in the range 0.1-0.4 mA. The geometry of the discharge makes it appropriate for gas decontamination. © 2008 American Institute of Physics. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00036951_v93_n3_p_Zastawny
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Atmospheric pressure
Atmospherics
Climatology
Discharge (fluid mechanics)
Electric corona
Electrolysis
Fluid mechanics
Metallizing
Meteorology
Plasmas
Air gaps
American Institute of Physics (AIP)
DC corona discharge
Dielectric barrier discharge (DBD)
Electrode lengths
Interelectrode
Low powers
Non equilibrium
Repetition frequencies
Three-electrode systems
Time periods
Electric discharges
spellingShingle Atmospheric pressure
Atmospherics
Climatology
Discharge (fluid mechanics)
Electric corona
Electrolysis
Fluid mechanics
Metallizing
Meteorology
Plasmas
Air gaps
American Institute of Physics (AIP)
DC corona discharge
Dielectric barrier discharge (DBD)
Electrode lengths
Interelectrode
Low powers
Non equilibrium
Repetition frequencies
Three-electrode systems
Time periods
Electric discharges
Zastawny, H.
Sosa, R.
Grondona, D.
Márquez, A.
Artana, G.
Kelly, H.
Development of a trielectrode plasma curtain at atmospheric pressure
topic_facet Atmospheric pressure
Atmospherics
Climatology
Discharge (fluid mechanics)
Electric corona
Electrolysis
Fluid mechanics
Metallizing
Meteorology
Plasmas
Air gaps
American Institute of Physics (AIP)
DC corona discharge
Dielectric barrier discharge (DBD)
Electrode lengths
Interelectrode
Low powers
Non equilibrium
Repetition frequencies
Three-electrode systems
Time periods
Electric discharges
description The development of a nonequilibrium, low-power, trielectrode plasma curtain at atmospheric pressure is presented. The discharge is based on the combination of an ac dielectric barrier discharge with a dc corona discharge in a three electrode system, and can be sustained for large time periods and over interelectrode air gaps up to 20 mm and with an electrode length of ∼10 cm in the transversal direction. The discharge is composed of a train of streamers, with a repetition frequency in the range 50-200 kHz, and carrying an average current in the range 0.1-0.4 mA. The geometry of the discharge makes it appropriate for gas decontamination. © 2008 American Institute of Physics.
format JOUR
author Zastawny, H.
Sosa, R.
Grondona, D.
Márquez, A.
Artana, G.
Kelly, H.
author_facet Zastawny, H.
Sosa, R.
Grondona, D.
Márquez, A.
Artana, G.
Kelly, H.
author_sort Zastawny, H.
title Development of a trielectrode plasma curtain at atmospheric pressure
title_short Development of a trielectrode plasma curtain at atmospheric pressure
title_full Development of a trielectrode plasma curtain at atmospheric pressure
title_fullStr Development of a trielectrode plasma curtain at atmospheric pressure
title_full_unstemmed Development of a trielectrode plasma curtain at atmospheric pressure
title_sort development of a trielectrode plasma curtain at atmospheric pressure
url http://hdl.handle.net/20.500.12110/paper_00036951_v93_n3_p_Zastawny
work_keys_str_mv AT zastawnyh developmentofatrielectrodeplasmacurtainatatmosphericpressure
AT sosar developmentofatrielectrodeplasmacurtainatatmosphericpressure
AT grondonad developmentofatrielectrodeplasmacurtainatatmosphericpressure
AT marqueza developmentofatrielectrodeplasmacurtainatatmosphericpressure
AT artanag developmentofatrielectrodeplasmacurtainatatmosphericpressure
AT kellyh developmentofatrielectrodeplasmacurtainatatmosphericpressure
_version_ 1807315631585886208