Development of a trielectrode plasma curtain at atmospheric pressure
The development of a nonequilibrium, low-power, trielectrode plasma curtain at atmospheric pressure is presented. The discharge is based on the combination of an ac dielectric barrier discharge with a dc corona discharge in a three electrode system, and can be sustained for large time periods and ov...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00036951_v93_n3_p_Zastawny |
Aporte de: |
id |
todo:paper_00036951_v93_n3_p_Zastawny |
---|---|
record_format |
dspace |
spelling |
todo:paper_00036951_v93_n3_p_Zastawny2023-10-03T13:56:37Z Development of a trielectrode plasma curtain at atmospheric pressure Zastawny, H. Sosa, R. Grondona, D. Márquez, A. Artana, G. Kelly, H. Atmospheric pressure Atmospherics Climatology Discharge (fluid mechanics) Electric corona Electrolysis Fluid mechanics Metallizing Meteorology Plasmas Air gaps American Institute of Physics (AIP) DC corona discharge Dielectric barrier discharge (DBD) Electrode lengths Interelectrode Low powers Non equilibrium Repetition frequencies Three-electrode systems Time periods Electric discharges The development of a nonequilibrium, low-power, trielectrode plasma curtain at atmospheric pressure is presented. The discharge is based on the combination of an ac dielectric barrier discharge with a dc corona discharge in a three electrode system, and can be sustained for large time periods and over interelectrode air gaps up to 20 mm and with an electrode length of ∼10 cm in the transversal direction. The discharge is composed of a train of streamers, with a repetition frequency in the range 50-200 kHz, and carrying an average current in the range 0.1-0.4 mA. The geometry of the discharge makes it appropriate for gas decontamination. © 2008 American Institute of Physics. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00036951_v93_n3_p_Zastawny |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Atmospheric pressure Atmospherics Climatology Discharge (fluid mechanics) Electric corona Electrolysis Fluid mechanics Metallizing Meteorology Plasmas Air gaps American Institute of Physics (AIP) DC corona discharge Dielectric barrier discharge (DBD) Electrode lengths Interelectrode Low powers Non equilibrium Repetition frequencies Three-electrode systems Time periods Electric discharges |
spellingShingle |
Atmospheric pressure Atmospherics Climatology Discharge (fluid mechanics) Electric corona Electrolysis Fluid mechanics Metallizing Meteorology Plasmas Air gaps American Institute of Physics (AIP) DC corona discharge Dielectric barrier discharge (DBD) Electrode lengths Interelectrode Low powers Non equilibrium Repetition frequencies Three-electrode systems Time periods Electric discharges Zastawny, H. Sosa, R. Grondona, D. Márquez, A. Artana, G. Kelly, H. Development of a trielectrode plasma curtain at atmospheric pressure |
topic_facet |
Atmospheric pressure Atmospherics Climatology Discharge (fluid mechanics) Electric corona Electrolysis Fluid mechanics Metallizing Meteorology Plasmas Air gaps American Institute of Physics (AIP) DC corona discharge Dielectric barrier discharge (DBD) Electrode lengths Interelectrode Low powers Non equilibrium Repetition frequencies Three-electrode systems Time periods Electric discharges |
description |
The development of a nonequilibrium, low-power, trielectrode plasma curtain at atmospheric pressure is presented. The discharge is based on the combination of an ac dielectric barrier discharge with a dc corona discharge in a three electrode system, and can be sustained for large time periods and over interelectrode air gaps up to 20 mm and with an electrode length of ∼10 cm in the transversal direction. The discharge is composed of a train of streamers, with a repetition frequency in the range 50-200 kHz, and carrying an average current in the range 0.1-0.4 mA. The geometry of the discharge makes it appropriate for gas decontamination. © 2008 American Institute of Physics. |
format |
JOUR |
author |
Zastawny, H. Sosa, R. Grondona, D. Márquez, A. Artana, G. Kelly, H. |
author_facet |
Zastawny, H. Sosa, R. Grondona, D. Márquez, A. Artana, G. Kelly, H. |
author_sort |
Zastawny, H. |
title |
Development of a trielectrode plasma curtain at atmospheric pressure |
title_short |
Development of a trielectrode plasma curtain at atmospheric pressure |
title_full |
Development of a trielectrode plasma curtain at atmospheric pressure |
title_fullStr |
Development of a trielectrode plasma curtain at atmospheric pressure |
title_full_unstemmed |
Development of a trielectrode plasma curtain at atmospheric pressure |
title_sort |
development of a trielectrode plasma curtain at atmospheric pressure |
url |
http://hdl.handle.net/20.500.12110/paper_00036951_v93_n3_p_Zastawny |
work_keys_str_mv |
AT zastawnyh developmentofatrielectrodeplasmacurtainatatmosphericpressure AT sosar developmentofatrielectrodeplasmacurtainatatmosphericpressure AT grondonad developmentofatrielectrodeplasmacurtainatatmosphericpressure AT marqueza developmentofatrielectrodeplasmacurtainatatmosphericpressure AT artanag developmentofatrielectrodeplasmacurtainatatmosphericpressure AT kellyh developmentofatrielectrodeplasmacurtainatatmosphericpressure |
_version_ |
1807315631585886208 |