A lyapunov type inequality for indefinite weights and eigenvalue homogenization
In this paper we prove a Lyapunov type inequality for quasilinear problems with indefinite weights. We show that the first eigenvalue is bounded below in terms of the integral of the weight, instead of the integral of its positive part. We apply this inequality to some eigenvalue homogenization prob...
Guardado en:
Autores principales: | Bonder, J.F., Pinasco, J.P., Salort, A.M. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00029939_v144_n4_p1669_Bonder |
Aporte de: |
Ejemplares similares
-
A lyapunov type inequality for indefinite weights and eigenvalue homogenization
por: Pinasco, Juan Pablo, et al.
Publicado: (2016) -
An inequality for eigenvalues of quasilinear problems with monotonic weights
por: Castro, M.J., et al.
Publicado: (2010) -
An inequality for eigenvalues of quasilinear problems with monotonic weights
por: Castro, M.J., et al. -
An inequality for eigenvalues of quasilinear problems with monotonic weights
por: Castro, M.J., et al.
Publicado: (2010) -
Estimates for eigenvalues of quasilinear elliptic systems
por: De Nápoli, P.L., et al.
Publicado: (2006)