A lyapunov type inequality for indefinite weights and eigenvalue homogenization
In this paper we prove a Lyapunov type inequality for quasilinear problems with indefinite weights. We show that the first eigenvalue is bounded below in terms of the integral of the weight, instead of the integral of its positive part. We apply this inequality to some eigenvalue homogenization prob...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00029939_v144_n4_p1669_Bonder |
Aporte de: |
id |
todo:paper_00029939_v144_n4_p1669_Bonder |
---|---|
record_format |
dspace |
spelling |
todo:paper_00029939_v144_n4_p1669_Bonder2023-10-03T13:55:17Z A lyapunov type inequality for indefinite weights and eigenvalue homogenization Bonder, J.F. Pinasco, J.P. Salort, A.M. Eigenvalues Homogenization Lyapunov’s inequality P-Laplacian In this paper we prove a Lyapunov type inequality for quasilinear problems with indefinite weights. We show that the first eigenvalue is bounded below in terms of the integral of the weight, instead of the integral of its positive part. We apply this inequality to some eigenvalue homogenization problems with indefinite weights. © 2015 American Mathematical Society. Fil:Pinasco, J.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Salort, A.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00029939_v144_n4_p1669_Bonder |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Eigenvalues Homogenization Lyapunov’s inequality P-Laplacian |
spellingShingle |
Eigenvalues Homogenization Lyapunov’s inequality P-Laplacian Bonder, J.F. Pinasco, J.P. Salort, A.M. A lyapunov type inequality for indefinite weights and eigenvalue homogenization |
topic_facet |
Eigenvalues Homogenization Lyapunov’s inequality P-Laplacian |
description |
In this paper we prove a Lyapunov type inequality for quasilinear problems with indefinite weights. We show that the first eigenvalue is bounded below in terms of the integral of the weight, instead of the integral of its positive part. We apply this inequality to some eigenvalue homogenization problems with indefinite weights. © 2015 American Mathematical Society. |
format |
JOUR |
author |
Bonder, J.F. Pinasco, J.P. Salort, A.M. |
author_facet |
Bonder, J.F. Pinasco, J.P. Salort, A.M. |
author_sort |
Bonder, J.F. |
title |
A lyapunov type inequality for indefinite weights and eigenvalue homogenization |
title_short |
A lyapunov type inequality for indefinite weights and eigenvalue homogenization |
title_full |
A lyapunov type inequality for indefinite weights and eigenvalue homogenization |
title_fullStr |
A lyapunov type inequality for indefinite weights and eigenvalue homogenization |
title_full_unstemmed |
A lyapunov type inequality for indefinite weights and eigenvalue homogenization |
title_sort |
lyapunov type inequality for indefinite weights and eigenvalue homogenization |
url |
http://hdl.handle.net/20.500.12110/paper_00029939_v144_n4_p1669_Bonder |
work_keys_str_mv |
AT bonderjf alyapunovtypeinequalityforindefiniteweightsandeigenvaluehomogenization AT pinascojp alyapunovtypeinequalityforindefiniteweightsandeigenvaluehomogenization AT salortam alyapunovtypeinequalityforindefiniteweightsandeigenvaluehomogenization AT bonderjf lyapunovtypeinequalityforindefiniteweightsandeigenvaluehomogenization AT pinascojp lyapunovtypeinequalityforindefiniteweightsandeigenvaluehomogenization AT salortam lyapunovtypeinequalityforindefiniteweightsandeigenvaluehomogenization |
_version_ |
1807324166682050560 |