A lyapunov type inequality for indefinite weights and eigenvalue homogenization

In this paper we prove a Lyapunov type inequality for quasilinear problems with indefinite weights. We show that the first eigenvalue is bounded below in terms of the integral of the weight, instead of the integral of its positive part. We apply this inequality to some eigenvalue homogenization prob...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Bonder, J.F., Pinasco, J.P., Salort, A.M.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00029939_v144_n4_p1669_Bonder
Aporte de:
id todo:paper_00029939_v144_n4_p1669_Bonder
record_format dspace
spelling todo:paper_00029939_v144_n4_p1669_Bonder2023-10-03T13:55:17Z A lyapunov type inequality for indefinite weights and eigenvalue homogenization Bonder, J.F. Pinasco, J.P. Salort, A.M. Eigenvalues Homogenization Lyapunov’s inequality P-Laplacian In this paper we prove a Lyapunov type inequality for quasilinear problems with indefinite weights. We show that the first eigenvalue is bounded below in terms of the integral of the weight, instead of the integral of its positive part. We apply this inequality to some eigenvalue homogenization problems with indefinite weights. © 2015 American Mathematical Society. Fil:Pinasco, J.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Salort, A.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00029939_v144_n4_p1669_Bonder
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Eigenvalues
Homogenization
Lyapunov’s inequality
P-Laplacian
spellingShingle Eigenvalues
Homogenization
Lyapunov’s inequality
P-Laplacian
Bonder, J.F.
Pinasco, J.P.
Salort, A.M.
A lyapunov type inequality for indefinite weights and eigenvalue homogenization
topic_facet Eigenvalues
Homogenization
Lyapunov’s inequality
P-Laplacian
description In this paper we prove a Lyapunov type inequality for quasilinear problems with indefinite weights. We show that the first eigenvalue is bounded below in terms of the integral of the weight, instead of the integral of its positive part. We apply this inequality to some eigenvalue homogenization problems with indefinite weights. © 2015 American Mathematical Society.
format JOUR
author Bonder, J.F.
Pinasco, J.P.
Salort, A.M.
author_facet Bonder, J.F.
Pinasco, J.P.
Salort, A.M.
author_sort Bonder, J.F.
title A lyapunov type inequality for indefinite weights and eigenvalue homogenization
title_short A lyapunov type inequality for indefinite weights and eigenvalue homogenization
title_full A lyapunov type inequality for indefinite weights and eigenvalue homogenization
title_fullStr A lyapunov type inequality for indefinite weights and eigenvalue homogenization
title_full_unstemmed A lyapunov type inequality for indefinite weights and eigenvalue homogenization
title_sort lyapunov type inequality for indefinite weights and eigenvalue homogenization
url http://hdl.handle.net/20.500.12110/paper_00029939_v144_n4_p1669_Bonder
work_keys_str_mv AT bonderjf alyapunovtypeinequalityforindefiniteweightsandeigenvaluehomogenization
AT pinascojp alyapunovtypeinequalityforindefiniteweightsandeigenvaluehomogenization
AT salortam alyapunovtypeinequalityforindefiniteweightsandeigenvaluehomogenization
AT bonderjf lyapunovtypeinequalityforindefiniteweightsandeigenvaluehomogenization
AT pinascojp lyapunovtypeinequalityforindefiniteweightsandeigenvaluehomogenization
AT salortam lyapunovtypeinequalityforindefiniteweightsandeigenvaluehomogenization
_version_ 1807324166682050560