Nichols algebras associated to the transpositions of the symmetric group are twist-equivalent
Using the theory of covering groups of Schur we prove that the two Nichols algebras associated to the conjugacy class of transpositions in S n are equivalent by twist and hence they have the same Hilbert series. These algebras appear in the classification of pointed Hopf algebras and in the study of...
Guardado en:
Autor principal: | |
---|---|
Formato: | JOUR |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00029939_v140_n11_p3715_Vendramin |
Aporte de: |
Sumario: | Using the theory of covering groups of Schur we prove that the two Nichols algebras associated to the conjugacy class of transpositions in S n are equivalent by twist and hence they have the same Hilbert series. These algebras appear in the classification of pointed Hopf algebras and in the study of the quantum cohomology ring of flag manifolds. © 2012 American Mathematical Society. |
---|