Nichols algebras associated to the transpositions of the symmetric group are twist-equivalent

Using the theory of covering groups of Schur we prove that the two Nichols algebras associated to the conjugacy class of transpositions in S n are equivalent by twist and hence they have the same Hilbert series. These algebras appear in the classification of pointed Hopf algebras and in the study of...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Vendramin, L.
Formato: JOUR
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00029939_v140_n11_p3715_Vendramin
Aporte de:
id todo:paper_00029939_v140_n11_p3715_Vendramin
record_format dspace
spelling todo:paper_00029939_v140_n11_p3715_Vendramin2023-10-03T13:55:13Z Nichols algebras associated to the transpositions of the symmetric group are twist-equivalent Vendramin, L. Using the theory of covering groups of Schur we prove that the two Nichols algebras associated to the conjugacy class of transpositions in S n are equivalent by twist and hence they have the same Hilbert series. These algebras appear in the classification of pointed Hopf algebras and in the study of the quantum cohomology ring of flag manifolds. © 2012 American Mathematical Society. Fil:Vendramin, L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00029939_v140_n11_p3715_Vendramin
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description Using the theory of covering groups of Schur we prove that the two Nichols algebras associated to the conjugacy class of transpositions in S n are equivalent by twist and hence they have the same Hilbert series. These algebras appear in the classification of pointed Hopf algebras and in the study of the quantum cohomology ring of flag manifolds. © 2012 American Mathematical Society.
format JOUR
author Vendramin, L.
spellingShingle Vendramin, L.
Nichols algebras associated to the transpositions of the symmetric group are twist-equivalent
author_facet Vendramin, L.
author_sort Vendramin, L.
title Nichols algebras associated to the transpositions of the symmetric group are twist-equivalent
title_short Nichols algebras associated to the transpositions of the symmetric group are twist-equivalent
title_full Nichols algebras associated to the transpositions of the symmetric group are twist-equivalent
title_fullStr Nichols algebras associated to the transpositions of the symmetric group are twist-equivalent
title_full_unstemmed Nichols algebras associated to the transpositions of the symmetric group are twist-equivalent
title_sort nichols algebras associated to the transpositions of the symmetric group are twist-equivalent
url http://hdl.handle.net/20.500.12110/paper_00029939_v140_n11_p3715_Vendramin
work_keys_str_mv AT vendraminl nicholsalgebrasassociatedtothetranspositionsofthesymmetricgrouparetwistequivalent
_version_ 1807321841635688448