On the Laplace transforms of retarded, Lorentz-invariant functions

Let ø(t) (t ∈ Rn) be a retarded, Lorentz-invariant function which satisfies, in addition, condition (c). We call "R" the family of such functions. Let f(z) be the Laplace transform of ø(t) ∈ R. We prove (Theorem 1) that f(z) can be expressed as a K-transform (formula (I, 2; 1)). We apply t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Domínguez, A.G., Trione, S.E.
Formato: JOUR
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00018708_v31_n1_p51_Dominguez
Aporte de:
id todo:paper_00018708_v31_n1_p51_Dominguez
record_format dspace
spelling todo:paper_00018708_v31_n1_p51_Dominguez2023-10-03T13:52:22Z On the Laplace transforms of retarded, Lorentz-invariant functions Domínguez, A.G. Trione, S.E. Let ø(t) (t ∈ Rn) be a retarded, Lorentz-invariant function which satisfies, in addition, condition (c). We call "R" the family of such functions. Let f(z) be the Laplace transform of ø(t) ∈ R. We prove (Theorem 1) that f(z) can be expressed as a K-transform (formula (I, 2; 1)). We apply this formula to evaluate several Laplace transforms. We show that it affords simple proofs of important known results. Formula (I, 2; 1) is an effective complement to L. Schwartz' method of evaluating Fourier transforms via Laplace transforms ("Théorie des distributions," p. 264, Hermann, Paris, 1966). We think this is the most useful application of our formula. © 1979. Fil:Trione, S.E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00018708_v31_n1_p51_Dominguez
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description Let ø(t) (t ∈ Rn) be a retarded, Lorentz-invariant function which satisfies, in addition, condition (c). We call "R" the family of such functions. Let f(z) be the Laplace transform of ø(t) ∈ R. We prove (Theorem 1) that f(z) can be expressed as a K-transform (formula (I, 2; 1)). We apply this formula to evaluate several Laplace transforms. We show that it affords simple proofs of important known results. Formula (I, 2; 1) is an effective complement to L. Schwartz' method of evaluating Fourier transforms via Laplace transforms ("Théorie des distributions," p. 264, Hermann, Paris, 1966). We think this is the most useful application of our formula. © 1979.
format JOUR
author Domínguez, A.G.
Trione, S.E.
spellingShingle Domínguez, A.G.
Trione, S.E.
On the Laplace transforms of retarded, Lorentz-invariant functions
author_facet Domínguez, A.G.
Trione, S.E.
author_sort Domínguez, A.G.
title On the Laplace transforms of retarded, Lorentz-invariant functions
title_short On the Laplace transforms of retarded, Lorentz-invariant functions
title_full On the Laplace transforms of retarded, Lorentz-invariant functions
title_fullStr On the Laplace transforms of retarded, Lorentz-invariant functions
title_full_unstemmed On the Laplace transforms of retarded, Lorentz-invariant functions
title_sort on the laplace transforms of retarded, lorentz-invariant functions
url http://hdl.handle.net/20.500.12110/paper_00018708_v31_n1_p51_Dominguez
work_keys_str_mv AT dominguezag onthelaplacetransformsofretardedlorentzinvariantfunctions
AT trionese onthelaplacetransformsofretardedlorentzinvariantfunctions
_version_ 1807314397387816960