Scalar concomitants of a metric and a curvature form

In an Einstein-Yang-Mills field theory the field equations can be obtained by applying a variational principle to a Langrangian minimally coupled to a Lagrangian concomitant of a curvature form and the metric tensor. As a step in the discussion of the uniqueness of these equations, we find the gener...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Noriega, R.J., Prélat, D., Schifini, C.G.
Formato: JOUR
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00017701_v20_n4_p337_Noriega
Aporte de:
id todo:paper_00017701_v20_n4_p337_Noriega
record_format dspace
spelling todo:paper_00017701_v20_n4_p337_Noriega2023-10-03T13:51:59Z Scalar concomitants of a metric and a curvature form Noriega, R.J. Prélat, D. Schifini, C.G. In an Einstein-Yang-Mills field theory the field equations can be obtained by applying a variational principle to a Langrangian minimally coupled to a Lagrangian concomitant of a curvature form and the metric tensor. As a step in the discussion of the uniqueness of these equations, we find the general form of such a Lagrangian. © 1988 Plenum Publishing Corporation. Fil:Noriega, R.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Prélat, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Schifini, C.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00017701_v20_n4_p337_Noriega
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description In an Einstein-Yang-Mills field theory the field equations can be obtained by applying a variational principle to a Langrangian minimally coupled to a Lagrangian concomitant of a curvature form and the metric tensor. As a step in the discussion of the uniqueness of these equations, we find the general form of such a Lagrangian. © 1988 Plenum Publishing Corporation.
format JOUR
author Noriega, R.J.
Prélat, D.
Schifini, C.G.
spellingShingle Noriega, R.J.
Prélat, D.
Schifini, C.G.
Scalar concomitants of a metric and a curvature form
author_facet Noriega, R.J.
Prélat, D.
Schifini, C.G.
author_sort Noriega, R.J.
title Scalar concomitants of a metric and a curvature form
title_short Scalar concomitants of a metric and a curvature form
title_full Scalar concomitants of a metric and a curvature form
title_fullStr Scalar concomitants of a metric and a curvature form
title_full_unstemmed Scalar concomitants of a metric and a curvature form
title_sort scalar concomitants of a metric and a curvature form
url http://hdl.handle.net/20.500.12110/paper_00017701_v20_n4_p337_Noriega
work_keys_str_mv AT noriegarj scalarconcomitantsofametricandacurvatureform
AT prelatd scalarconcomitantsofametricandacurvatureform
AT schifinicg scalarconcomitantsofametricandacurvatureform
_version_ 1807321268863631360