Algoritmos eficientes para aplicaciones en tomografía óptica
En esta Tesis se presenta un algoritmo paralelo eficiente para la resolución del problema inverso en tomografía óptica basado en la ecuación de transferencia radiativa en el dominio temporal. Esta ecuación provee un modelo físicamente preciso para el transporte de fotones en el tejido biológico, per...
Autor principal: | |
---|---|
Otros Autores: | |
Formato: | Tesis doctoral publishedVersion |
Lenguaje: | Español |
Publicado: |
Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales
2022
|
Materias: | |
Acceso en línea: | https://hdl.handle.net/20.500.12110/tesis_n7114_Gaggioli |
Aporte de: |
id |
tesis:tesis_n7114_Gaggioli |
---|---|
record_format |
dspace |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
language |
Español |
orig_language_str_mv |
spa |
topic |
PROPAGACION DE LA RADIACION EN LA MATERIA TOMOGRAFIA OPTICA ECUACION DE TRANSPORTE RADIATIVO ESPECTROSCOPIA DEL INFRARROJO CERCANO PROBLEMA INVERSO RADIATION TRANSPORT THROUGH MATTER OPTICAL TOMOGRAPHY RADIATIVE TRANSFER EQUATION NEAR INFRARED SPECTROSCOPY INVERSE PROBLEM |
spellingShingle |
PROPAGACION DE LA RADIACION EN LA MATERIA TOMOGRAFIA OPTICA ECUACION DE TRANSPORTE RADIATIVO ESPECTROSCOPIA DEL INFRARROJO CERCANO PROBLEMA INVERSO RADIATION TRANSPORT THROUGH MATTER OPTICAL TOMOGRAPHY RADIATIVE TRANSFER EQUATION NEAR INFRARED SPECTROSCOPY INVERSE PROBLEM Gaggioli, Enzo Leopoldo Algoritmos eficientes para aplicaciones en tomografía óptica |
topic_facet |
PROPAGACION DE LA RADIACION EN LA MATERIA TOMOGRAFIA OPTICA ECUACION DE TRANSPORTE RADIATIVO ESPECTROSCOPIA DEL INFRARROJO CERCANO PROBLEMA INVERSO RADIATION TRANSPORT THROUGH MATTER OPTICAL TOMOGRAPHY RADIATIVE TRANSFER EQUATION NEAR INFRARED SPECTROSCOPY INVERSE PROBLEM |
description |
En esta Tesis se presenta un algoritmo paralelo eficiente para la resolución del problema inverso en tomografía óptica basado en la ecuación de transferencia radiativa en el dominio temporal. Esta ecuación provee un modelo físicamente preciso para el transporte de fotones en el tejido biológico, pero el alto costo computacional asociado a su resolución representa un obstáculo para su utilización en tomografía óptica, y otras áreas. En esta Tesis se aborda este problema mediante un número de innovaciones computacionales y de modelado, que incluyen 1) La incorporación de un método espectral de alto orden (continuación de Fourier en ordenadas discretas (FC–DOM)) que permite resolver la ecuación de transporte con gran precisión y con reducido esfuerzo computacional. 2) Una estrategia de paralelización basada en la descomposición del dominio espacial que presenta escalabilidad ideal para los problemas directos e inversos; 3) Una estrategia de Fuentes Múltiples Superpuestas (FMS) que resuelve el problema inverso de transporte con un costo computacional que es independiente del número de fuentes empleadas, y el cual acelera significativamente la reconstrucción de los parámetros ópticos. Adicionalmente, esta contribución presenta una derivación intuitiva de la formulación del problema adjunto para el cálculo de los gradientes funcionales, que incorpora las condiciones de borde de Fresnel. Se presentan soluciones de problemas inversos realistas en 2D, que fueron obtenidos en un cluster de computadoras con hasta 256 procesadores. La combinación del método FC–DOM, la estrategia de paralelización y la técnica FMS redujo el tiempo computacional requerido para la resolución de estos problemas, de meses a unas pocas horas. |
author2 |
Mitnik, Darío |
author_facet |
Mitnik, Darío Gaggioli, Enzo Leopoldo |
format |
Tesis doctoral Tesis doctoral publishedVersion |
author |
Gaggioli, Enzo Leopoldo |
author_sort |
Gaggioli, Enzo Leopoldo |
title |
Algoritmos eficientes para aplicaciones en tomografía óptica |
title_short |
Algoritmos eficientes para aplicaciones en tomografía óptica |
title_full |
Algoritmos eficientes para aplicaciones en tomografía óptica |
title_fullStr |
Algoritmos eficientes para aplicaciones en tomografía óptica |
title_full_unstemmed |
Algoritmos eficientes para aplicaciones en tomografía óptica |
title_sort |
algoritmos eficientes para aplicaciones en tomografía óptica |
publisher |
Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
publishDate |
2022 |
url |
https://hdl.handle.net/20.500.12110/tesis_n7114_Gaggioli |
work_keys_str_mv |
AT gaggiolienzoleopoldo algoritmoseficientesparaaplicacionesentomografiaoptica AT gaggiolienzoleopoldo efficientalgorithmsforopticaltomographyapplications |
_version_ |
1831981596771614720 |
spelling |
tesis:tesis_n7114_Gaggioli2025-03-31T21:51:22Z Algoritmos eficientes para aplicaciones en tomografía óptica Efficient algorithms for optical tomography applications Gaggioli, Enzo Leopoldo Mitnik, Darío Delrieux, Claudio Augusto PROPAGACION DE LA RADIACION EN LA MATERIA TOMOGRAFIA OPTICA ECUACION DE TRANSPORTE RADIATIVO ESPECTROSCOPIA DEL INFRARROJO CERCANO PROBLEMA INVERSO RADIATION TRANSPORT THROUGH MATTER OPTICAL TOMOGRAPHY RADIATIVE TRANSFER EQUATION NEAR INFRARED SPECTROSCOPY INVERSE PROBLEM En esta Tesis se presenta un algoritmo paralelo eficiente para la resolución del problema inverso en tomografía óptica basado en la ecuación de transferencia radiativa en el dominio temporal. Esta ecuación provee un modelo físicamente preciso para el transporte de fotones en el tejido biológico, pero el alto costo computacional asociado a su resolución representa un obstáculo para su utilización en tomografía óptica, y otras áreas. En esta Tesis se aborda este problema mediante un número de innovaciones computacionales y de modelado, que incluyen 1) La incorporación de un método espectral de alto orden (continuación de Fourier en ordenadas discretas (FC–DOM)) que permite resolver la ecuación de transporte con gran precisión y con reducido esfuerzo computacional. 2) Una estrategia de paralelización basada en la descomposición del dominio espacial que presenta escalabilidad ideal para los problemas directos e inversos; 3) Una estrategia de Fuentes Múltiples Superpuestas (FMS) que resuelve el problema inverso de transporte con un costo computacional que es independiente del número de fuentes empleadas, y el cual acelera significativamente la reconstrucción de los parámetros ópticos. Adicionalmente, esta contribución presenta una derivación intuitiva de la formulación del problema adjunto para el cálculo de los gradientes funcionales, que incorpora las condiciones de borde de Fresnel. Se presentan soluciones de problemas inversos realistas en 2D, que fueron obtenidos en un cluster de computadoras con hasta 256 procesadores. La combinación del método FC–DOM, la estrategia de paralelización y la técnica FMS redujo el tiempo computacional requerido para la resolución de estos problemas, de meses a unas pocas horas. This Thesis presents an efficient parallel radiative transfer–based inverse–problem solver for time–domain optical tomography. This equation provides a physically accurate model for the transport of photons in biological tissue, but the high computational cost associated with its solution has hindered its use in time–domain optical–tomography and other areas. In this Thesis this problem is tackled by means of a number of computational and modeling innovations, including 1) The incorporation of a high–order spectral method (Fourier continuation discrete ordinates method (FC–DOM)), allowing the solution of the transport equation with high precision and with low computational cost. 2) A spatial parallel–decomposition strategy with perfect parallel scaling for the forward and inverse problems of optical tomography on parallel computer systems; and, 3) A Multiple Staggered Source method (MSS) that solves the inverse transport problem at a computational cost that is independent of the number of sources employed, and which significantly accelerates the reconstruction of the optical parameters. Additionally, this contribution presents an intuitive derivation of the adjoint–based formulation for evaluation of functional gradients, including general Fresnel boundary conditions. Solutions of large and realistic 2D inverse problems are presented, which were produced on a 256–core computer system. The combined FC–DOM/parallel/MSS acceleration approach reduced the required computing times by several orders of magnitude, from months to a few hours. Fil: Gaggioli, Enzo Leopoldo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales 2022-07-12 info:eu-repo/semantics/doctoralThesis info:ar-repo/semantics/tesis doctoral info:eu-repo/semantics/publishedVersion application/pdf spa info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar https://hdl.handle.net/20.500.12110/tesis_n7114_Gaggioli |