Existencia y unicidad de soluciones para ecuaciones del tipo curvatura media prescripta
In this work we study the Dirichlet problem associated to the prescribedmean curvature equation. We obtain existence and local and global uniquenessfor the general and the nonparametric case under different conditions on the meancurvature H and the boundary data g. We also prove that if H and g ares...
Autor principal: | |
---|---|
Otros Autores: | |
Formato: | Tesis doctoral publishedVersion |
Lenguaje: | Español |
Publicado: |
Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales
1998
|
Materias: | |
Acceso en línea: | https://hdl.handle.net/20.500.12110/tesis_n3088_Amster |
Aporte de: |
id |
tesis:tesis_n3088_Amster |
---|---|
record_format |
dspace |
spelling |
tesis:tesis_n3088_Amster2025-03-31T21:14:06Z Existencia y unicidad de soluciones para ecuaciones del tipo curvatura media prescripta Existence and uniqueness of the solutions of equations of prescribed mean curvature type Amster, Pablo Gustavo Mariani, María Cristina CURVATURA MEDIA ESPACIOS DE SOBOLEV TEOREMAS DE PUNTO FIJO OPERADOR ELIPTICO MEAN CURVATURE SOBOLEV SPACE FIXED POINT THEOREMS ELIPTIC OPERATOR In this work we study the Dirichlet problem associated to the prescribedmean curvature equation. We obtain existence and local and global uniquenessfor the general and the nonparametric case under different conditions on the meancurvature H and the boundary data g. We also prove that if H and g aresmooth, solutions are classic. Moreover, we prove in both cases that if there is asolution for some Ho and go , then there exists also a solution for H and g closeto Ho and go. We also study some semilinear equations of the type X’ = F(t,X) withboundary data X(0) = g(X(a)) , for which we obtain existence and uniquenessresults under some conditions on the continuous functions F and g. For theperiodic case (g = I), we give some criteria for the existence of solutions, and anuniqueness result. Fil: Amster, Pablo Gustavo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales 1998 info:eu-repo/semantics/doctoralThesis info:ar-repo/semantics/tesis doctoral info:eu-repo/semantics/publishedVersion application/pdf spa info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar https://hdl.handle.net/20.500.12110/tesis_n3088_Amster |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
language |
Español |
orig_language_str_mv |
spa |
topic |
CURVATURA MEDIA ESPACIOS DE SOBOLEV TEOREMAS DE PUNTO FIJO OPERADOR ELIPTICO MEAN CURVATURE SOBOLEV SPACE FIXED POINT THEOREMS ELIPTIC OPERATOR |
spellingShingle |
CURVATURA MEDIA ESPACIOS DE SOBOLEV TEOREMAS DE PUNTO FIJO OPERADOR ELIPTICO MEAN CURVATURE SOBOLEV SPACE FIXED POINT THEOREMS ELIPTIC OPERATOR Amster, Pablo Gustavo Existencia y unicidad de soluciones para ecuaciones del tipo curvatura media prescripta |
topic_facet |
CURVATURA MEDIA ESPACIOS DE SOBOLEV TEOREMAS DE PUNTO FIJO OPERADOR ELIPTICO MEAN CURVATURE SOBOLEV SPACE FIXED POINT THEOREMS ELIPTIC OPERATOR |
description |
In this work we study the Dirichlet problem associated to the prescribedmean curvature equation. We obtain existence and local and global uniquenessfor the general and the nonparametric case under different conditions on the meancurvature H and the boundary data g. We also prove that if H and g aresmooth, solutions are classic. Moreover, we prove in both cases that if there is asolution for some Ho and go , then there exists also a solution for H and g closeto Ho and go. We also study some semilinear equations of the type X’ = F(t,X) withboundary data X(0) = g(X(a)) , for which we obtain existence and uniquenessresults under some conditions on the continuous functions F and g. For theperiodic case (g = I), we give some criteria for the existence of solutions, and anuniqueness result. |
author2 |
Mariani, María Cristina |
author_facet |
Mariani, María Cristina Amster, Pablo Gustavo |
format |
Tesis doctoral Tesis doctoral publishedVersion |
author |
Amster, Pablo Gustavo |
author_sort |
Amster, Pablo Gustavo |
title |
Existencia y unicidad de soluciones para ecuaciones del tipo curvatura media prescripta |
title_short |
Existencia y unicidad de soluciones para ecuaciones del tipo curvatura media prescripta |
title_full |
Existencia y unicidad de soluciones para ecuaciones del tipo curvatura media prescripta |
title_fullStr |
Existencia y unicidad de soluciones para ecuaciones del tipo curvatura media prescripta |
title_full_unstemmed |
Existencia y unicidad de soluciones para ecuaciones del tipo curvatura media prescripta |
title_sort |
existencia y unicidad de soluciones para ecuaciones del tipo curvatura media prescripta |
publisher |
Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
publishDate |
1998 |
url |
https://hdl.handle.net/20.500.12110/tesis_n3088_Amster |
work_keys_str_mv |
AT amsterpablogustavo existenciayunicidaddesolucionesparaecuacionesdeltipocurvaturamediaprescripta AT amsterpablogustavo existenceanduniquenessofthesolutionsofequationsofprescribedmeancurvaturetype |
_version_ |
1831982280823799808 |