Following ligand migration pathways from picoseconds to milliseconds in type ii truncated hemoglobin from thermobifida fusca

CO recombination kinetics has been investigated in the type II truncated hemoglobin from Thermobifida fusca (Tf-trHb) over more than 10 time decades (from 1 ps to ~100 ms) by combining femtosecond transient absorption, nanosecond laser flash photolysis and optoacoustic spectroscopy. Photolysis is fo...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Marcelli, A., Abbruzzetti, S., Bustamante, J.P., Feis, A., Bonamore, A., Boffi, A., Gellini, C., Salvi, P.R., Estrin, D.A., Bruno, S., Viappiani, C., Foggi, P.
Formato: Artículo publishedVersion
Lenguaje:Inglés
Publicado: 2012
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_19326203_v7_n7_p_Marcelli
Aporte de:
id paperaa:paper_19326203_v7_n7_p_Marcelli
record_format dspace
spelling paperaa:paper_19326203_v7_n7_p_Marcelli2023-06-12T16:51:40Z Following ligand migration pathways from picoseconds to milliseconds in type ii truncated hemoglobin from thermobifida fusca PLoS ONE 2012;7(7) Marcelli, A. Abbruzzetti, S. Bustamante, J.P. Feis, A. Bonamore, A. Boffi, A. Gellini, C. Salvi, P.R. Estrin, D.A. Bruno, S. Viappiani, C. Foggi, P. carbon monoxide truncated hemoglobin article bacterium binding affinity binding kinetics binding site complex formation controlled study enthalpy entropy ligand binding molecular dynamics molecular recognition nonhuman photoacoustic spectroscopy photolysis protein binding quantum yield steady state temperature sensitivity Thermobifida fusca Actinomycetales Carbon Monoxide Kinetics Ligands Photolysis Protein Binding Time Factors Truncated Hemoglobins Thermobifida fusca CO recombination kinetics has been investigated in the type II truncated hemoglobin from Thermobifida fusca (Tf-trHb) over more than 10 time decades (from 1 ps to ~100 ms) by combining femtosecond transient absorption, nanosecond laser flash photolysis and optoacoustic spectroscopy. Photolysis is followed by a rapid geminate recombination with a time constant of ~2 ns representing almost 60% of the overall reaction. An additional, small amplitude geminate recombination was identified at ~100 ns. Finally, CO pressure dependent measurements brought out the presence of two transient species in the second order rebinding phase, with time constants ranging from ~3 to ~100 ms. The available experimental evidence suggests that the two transients are due to the presence of two conformations which do not interconvert within the time frame of the experiment. Computational studies revealed that the plasticity of protein structure is able to define a branched pathway connecting the ligand binding site and the solvent. This allowed to build a kinetic model capable of describing the complete time course of the CO rebinding kinetics to Tf-trHb. © 2012 Marcelli et al. Fil:Bustamante, J.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Estrin, D.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2012 info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion application/pdf eng info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_19326203_v7_n7_p_Marcelli
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
language Inglés
orig_language_str_mv eng
topic carbon monoxide
truncated hemoglobin
article
bacterium
binding affinity
binding kinetics
binding site
complex formation
controlled study
enthalpy
entropy
ligand binding
molecular dynamics
molecular recognition
nonhuman
photoacoustic spectroscopy
photolysis
protein binding
quantum yield
steady state
temperature sensitivity
Thermobifida fusca
Actinomycetales
Carbon Monoxide
Kinetics
Ligands
Photolysis
Protein Binding
Time Factors
Truncated Hemoglobins
Thermobifida fusca
spellingShingle carbon monoxide
truncated hemoglobin
article
bacterium
binding affinity
binding kinetics
binding site
complex formation
controlled study
enthalpy
entropy
ligand binding
molecular dynamics
molecular recognition
nonhuman
photoacoustic spectroscopy
photolysis
protein binding
quantum yield
steady state
temperature sensitivity
Thermobifida fusca
Actinomycetales
Carbon Monoxide
Kinetics
Ligands
Photolysis
Protein Binding
Time Factors
Truncated Hemoglobins
Thermobifida fusca
Marcelli, A.
Abbruzzetti, S.
Bustamante, J.P.
Feis, A.
Bonamore, A.
Boffi, A.
Gellini, C.
Salvi, P.R.
Estrin, D.A.
Bruno, S.
Viappiani, C.
Foggi, P.
Following ligand migration pathways from picoseconds to milliseconds in type ii truncated hemoglobin from thermobifida fusca
topic_facet carbon monoxide
truncated hemoglobin
article
bacterium
binding affinity
binding kinetics
binding site
complex formation
controlled study
enthalpy
entropy
ligand binding
molecular dynamics
molecular recognition
nonhuman
photoacoustic spectroscopy
photolysis
protein binding
quantum yield
steady state
temperature sensitivity
Thermobifida fusca
Actinomycetales
Carbon Monoxide
Kinetics
Ligands
Photolysis
Protein Binding
Time Factors
Truncated Hemoglobins
Thermobifida fusca
description CO recombination kinetics has been investigated in the type II truncated hemoglobin from Thermobifida fusca (Tf-trHb) over more than 10 time decades (from 1 ps to ~100 ms) by combining femtosecond transient absorption, nanosecond laser flash photolysis and optoacoustic spectroscopy. Photolysis is followed by a rapid geminate recombination with a time constant of ~2 ns representing almost 60% of the overall reaction. An additional, small amplitude geminate recombination was identified at ~100 ns. Finally, CO pressure dependent measurements brought out the presence of two transient species in the second order rebinding phase, with time constants ranging from ~3 to ~100 ms. The available experimental evidence suggests that the two transients are due to the presence of two conformations which do not interconvert within the time frame of the experiment. Computational studies revealed that the plasticity of protein structure is able to define a branched pathway connecting the ligand binding site and the solvent. This allowed to build a kinetic model capable of describing the complete time course of the CO rebinding kinetics to Tf-trHb. © 2012 Marcelli et al.
format Artículo
Artículo
publishedVersion
author Marcelli, A.
Abbruzzetti, S.
Bustamante, J.P.
Feis, A.
Bonamore, A.
Boffi, A.
Gellini, C.
Salvi, P.R.
Estrin, D.A.
Bruno, S.
Viappiani, C.
Foggi, P.
author_facet Marcelli, A.
Abbruzzetti, S.
Bustamante, J.P.
Feis, A.
Bonamore, A.
Boffi, A.
Gellini, C.
Salvi, P.R.
Estrin, D.A.
Bruno, S.
Viappiani, C.
Foggi, P.
author_sort Marcelli, A.
title Following ligand migration pathways from picoseconds to milliseconds in type ii truncated hemoglobin from thermobifida fusca
title_short Following ligand migration pathways from picoseconds to milliseconds in type ii truncated hemoglobin from thermobifida fusca
title_full Following ligand migration pathways from picoseconds to milliseconds in type ii truncated hemoglobin from thermobifida fusca
title_fullStr Following ligand migration pathways from picoseconds to milliseconds in type ii truncated hemoglobin from thermobifida fusca
title_full_unstemmed Following ligand migration pathways from picoseconds to milliseconds in type ii truncated hemoglobin from thermobifida fusca
title_sort following ligand migration pathways from picoseconds to milliseconds in type ii truncated hemoglobin from thermobifida fusca
publishDate 2012
url http://hdl.handle.net/20.500.12110/paper_19326203_v7_n7_p_Marcelli
work_keys_str_mv AT marcellia followingligandmigrationpathwaysfrompicosecondstomillisecondsintypeiitruncatedhemoglobinfromthermobifidafusca
AT abbruzzettis followingligandmigrationpathwaysfrompicosecondstomillisecondsintypeiitruncatedhemoglobinfromthermobifidafusca
AT bustamantejp followingligandmigrationpathwaysfrompicosecondstomillisecondsintypeiitruncatedhemoglobinfromthermobifidafusca
AT feisa followingligandmigrationpathwaysfrompicosecondstomillisecondsintypeiitruncatedhemoglobinfromthermobifidafusca
AT bonamorea followingligandmigrationpathwaysfrompicosecondstomillisecondsintypeiitruncatedhemoglobinfromthermobifidafusca
AT boffia followingligandmigrationpathwaysfrompicosecondstomillisecondsintypeiitruncatedhemoglobinfromthermobifidafusca
AT gellinic followingligandmigrationpathwaysfrompicosecondstomillisecondsintypeiitruncatedhemoglobinfromthermobifidafusca
AT salvipr followingligandmigrationpathwaysfrompicosecondstomillisecondsintypeiitruncatedhemoglobinfromthermobifidafusca
AT estrinda followingligandmigrationpathwaysfrompicosecondstomillisecondsintypeiitruncatedhemoglobinfromthermobifidafusca
AT brunos followingligandmigrationpathwaysfrompicosecondstomillisecondsintypeiitruncatedhemoglobinfromthermobifidafusca
AT viappianic followingligandmigrationpathwaysfrompicosecondstomillisecondsintypeiitruncatedhemoglobinfromthermobifidafusca
AT foggip followingligandmigrationpathwaysfrompicosecondstomillisecondsintypeiitruncatedhemoglobinfromthermobifidafusca
_version_ 1769810198638100480