Solutions to H-systems by topological and iterative methods
We study H-systems with a Dirichlet boundary data g. Under some conditions, we show that if the problem admits a solution for some (H0, g 0), then it can be solved for any (H,g) close enough to (H 0,g0). Moreover, we construct a solution of the problem applying a Newton iteration.
Guardado en:
Autores principales: | , |
---|---|
Formato: | Artículo publishedVersion |
Lenguaje: | Inglés |
Publicado: |
2003
|
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_10853375_v2003_n9_p539_Amster |
Aporte de: |
id |
paperaa:paper_10853375_v2003_n9_p539_Amster |
---|---|
record_format |
dspace |
spelling |
paperaa:paper_10853375_v2003_n9_p539_Amster2023-06-12T16:49:37Z Solutions to H-systems by topological and iterative methods Abstr. Appl. Anal. 2003;2003(9):539-545 Amster, P. Mariani, M.C. We study H-systems with a Dirichlet boundary data g. Under some conditions, we show that if the problem admits a solution for some (H0, g 0), then it can be solved for any (H,g) close enough to (H 0,g0). Moreover, we construct a solution of the problem applying a Newton iteration. Fil:Amster, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Mariani, M.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2003 info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion application/pdf eng info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_10853375_v2003_n9_p539_Amster |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
language |
Inglés |
orig_language_str_mv |
eng |
description |
We study H-systems with a Dirichlet boundary data g. Under some conditions, we show that if the problem admits a solution for some (H0, g 0), then it can be solved for any (H,g) close enough to (H 0,g0). Moreover, we construct a solution of the problem applying a Newton iteration. |
format |
Artículo Artículo publishedVersion |
author |
Amster, P. Mariani, M.C. |
spellingShingle |
Amster, P. Mariani, M.C. Solutions to H-systems by topological and iterative methods |
author_facet |
Amster, P. Mariani, M.C. |
author_sort |
Amster, P. |
title |
Solutions to H-systems by topological and iterative methods |
title_short |
Solutions to H-systems by topological and iterative methods |
title_full |
Solutions to H-systems by topological and iterative methods |
title_fullStr |
Solutions to H-systems by topological and iterative methods |
title_full_unstemmed |
Solutions to H-systems by topological and iterative methods |
title_sort |
solutions to h-systems by topological and iterative methods |
publishDate |
2003 |
url |
http://hdl.handle.net/20.500.12110/paper_10853375_v2003_n9_p539_Amster |
work_keys_str_mv |
AT amsterp solutionstohsystemsbytopologicalanditerativemethods AT marianimc solutionstohsystemsbytopologicalanditerativemethods |
_version_ |
1769810191830745088 |