Parallel algorithms for normalization
Given a reduced affine algebra A over a perfect field K, we present parallel algorithms to compute the normalization Ā of A. Our starting point is the algorithm of Greuel et al. (2010), which is an improvement of de Jong's algorithm (de Jong, 1998; Decker et al., 1999). First, we propose to str...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | Artículo publishedVersion |
Lenguaje: | Inglés |
Publicado: |
2013
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_07477171_v51_n_p99_Bohm |
Aporte de: |
id |
paperaa:paper_07477171_v51_n_p99_Bohm |
---|---|
record_format |
dspace |
spelling |
paperaa:paper_07477171_v51_n_p99_Bohm2023-06-12T16:48:15Z Parallel algorithms for normalization J. Symb. Comput. 2013;51:99-114 Böhm, J. Decker, W. Laplagne, S. Pfister, G. Steenpaß, A. Steidel, S. Grauert-Remmert criterion Integral closure Modular computation Normalization Parallel computation Test ideal Given a reduced affine algebra A over a perfect field K, we present parallel algorithms to compute the normalization Ā of A. Our starting point is the algorithm of Greuel et al. (2010), which is an improvement of de Jong's algorithm (de Jong, 1998; Decker et al., 1999). First, we propose to stratify the singular locus Sing(A) in a way which is compatible with normalization, apply a local version of the normalization algorithm at each stratum, and find Ā by putting the local results together. Second, in the case where K=Q is the field of rationals, we propose modular versions of the global and local-to-global algorithms. We have implemented our algorithms in the computer algebra system Singular and compare their performance with that of the algorithm of Greuel et al. (2010). In the case where K=Q, we also discuss the use of modular computations of Gröbner bases, radicals, and primary decompositions. We point out that in most examples, the new algorithms outperform the algorithm of Greuel et al. (2010) by far, even if we do not run them in parallel. © 2012 Elsevier B.V. Fil:Laplagne, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2013 info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion application/pdf eng info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_07477171_v51_n_p99_Bohm |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
language |
Inglés |
orig_language_str_mv |
eng |
topic |
Grauert-Remmert criterion Integral closure Modular computation Normalization Parallel computation Test ideal |
spellingShingle |
Grauert-Remmert criterion Integral closure Modular computation Normalization Parallel computation Test ideal Böhm, J. Decker, W. Laplagne, S. Pfister, G. Steenpaß, A. Steidel, S. Parallel algorithms for normalization |
topic_facet |
Grauert-Remmert criterion Integral closure Modular computation Normalization Parallel computation Test ideal |
description |
Given a reduced affine algebra A over a perfect field K, we present parallel algorithms to compute the normalization Ā of A. Our starting point is the algorithm of Greuel et al. (2010), which is an improvement of de Jong's algorithm (de Jong, 1998; Decker et al., 1999). First, we propose to stratify the singular locus Sing(A) in a way which is compatible with normalization, apply a local version of the normalization algorithm at each stratum, and find Ā by putting the local results together. Second, in the case where K=Q is the field of rationals, we propose modular versions of the global and local-to-global algorithms. We have implemented our algorithms in the computer algebra system Singular and compare their performance with that of the algorithm of Greuel et al. (2010). In the case where K=Q, we also discuss the use of modular computations of Gröbner bases, radicals, and primary decompositions. We point out that in most examples, the new algorithms outperform the algorithm of Greuel et al. (2010) by far, even if we do not run them in parallel. © 2012 Elsevier B.V. |
format |
Artículo Artículo publishedVersion |
author |
Böhm, J. Decker, W. Laplagne, S. Pfister, G. Steenpaß, A. Steidel, S. |
author_facet |
Böhm, J. Decker, W. Laplagne, S. Pfister, G. Steenpaß, A. Steidel, S. |
author_sort |
Böhm, J. |
title |
Parallel algorithms for normalization |
title_short |
Parallel algorithms for normalization |
title_full |
Parallel algorithms for normalization |
title_fullStr |
Parallel algorithms for normalization |
title_full_unstemmed |
Parallel algorithms for normalization |
title_sort |
parallel algorithms for normalization |
publishDate |
2013 |
url |
http://hdl.handle.net/20.500.12110/paper_07477171_v51_n_p99_Bohm |
work_keys_str_mv |
AT bohmj parallelalgorithmsfornormalization AT deckerw parallelalgorithmsfornormalization AT laplagnes parallelalgorithmsfornormalization AT pfisterg parallelalgorithmsfornormalization AT steenpaßa parallelalgorithmsfornormalization AT steidels parallelalgorithmsfornormalization |
_version_ |
1769810338927083520 |