Parallel algorithms for normalization

Given a reduced affine algebra A over a perfect field K, we present parallel algorithms to compute the normalization Ā of A. Our starting point is the algorithm of Greuel et al. (2010), which is an improvement of de Jong's algorithm (de Jong, 1998; Decker et al., 1999). First, we propose to str...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Böhm, J., Decker, W., Laplagne, S., Pfister, G., Steenpaß, A., Steidel, S.
Formato: Artículo publishedVersion
Lenguaje:Inglés
Publicado: 2013
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_07477171_v51_n_p99_Bohm
Aporte de:
id paperaa:paper_07477171_v51_n_p99_Bohm
record_format dspace
spelling paperaa:paper_07477171_v51_n_p99_Bohm2023-06-12T16:48:15Z Parallel algorithms for normalization J. Symb. Comput. 2013;51:99-114 Böhm, J. Decker, W. Laplagne, S. Pfister, G. Steenpaß, A. Steidel, S. Grauert-Remmert criterion Integral closure Modular computation Normalization Parallel computation Test ideal Given a reduced affine algebra A over a perfect field K, we present parallel algorithms to compute the normalization Ā of A. Our starting point is the algorithm of Greuel et al. (2010), which is an improvement of de Jong's algorithm (de Jong, 1998; Decker et al., 1999). First, we propose to stratify the singular locus Sing(A) in a way which is compatible with normalization, apply a local version of the normalization algorithm at each stratum, and find Ā by putting the local results together. Second, in the case where K=Q is the field of rationals, we propose modular versions of the global and local-to-global algorithms. We have implemented our algorithms in the computer algebra system Singular and compare their performance with that of the algorithm of Greuel et al. (2010). In the case where K=Q, we also discuss the use of modular computations of Gröbner bases, radicals, and primary decompositions. We point out that in most examples, the new algorithms outperform the algorithm of Greuel et al. (2010) by far, even if we do not run them in parallel. © 2012 Elsevier B.V. Fil:Laplagne, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2013 info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion application/pdf eng info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_07477171_v51_n_p99_Bohm
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
language Inglés
orig_language_str_mv eng
topic Grauert-Remmert criterion
Integral closure
Modular computation
Normalization
Parallel computation
Test ideal
spellingShingle Grauert-Remmert criterion
Integral closure
Modular computation
Normalization
Parallel computation
Test ideal
Böhm, J.
Decker, W.
Laplagne, S.
Pfister, G.
Steenpaß, A.
Steidel, S.
Parallel algorithms for normalization
topic_facet Grauert-Remmert criterion
Integral closure
Modular computation
Normalization
Parallel computation
Test ideal
description Given a reduced affine algebra A over a perfect field K, we present parallel algorithms to compute the normalization Ā of A. Our starting point is the algorithm of Greuel et al. (2010), which is an improvement of de Jong's algorithm (de Jong, 1998; Decker et al., 1999). First, we propose to stratify the singular locus Sing(A) in a way which is compatible with normalization, apply a local version of the normalization algorithm at each stratum, and find Ā by putting the local results together. Second, in the case where K=Q is the field of rationals, we propose modular versions of the global and local-to-global algorithms. We have implemented our algorithms in the computer algebra system Singular and compare their performance with that of the algorithm of Greuel et al. (2010). In the case where K=Q, we also discuss the use of modular computations of Gröbner bases, radicals, and primary decompositions. We point out that in most examples, the new algorithms outperform the algorithm of Greuel et al. (2010) by far, even if we do not run them in parallel. © 2012 Elsevier B.V.
format Artículo
Artículo
publishedVersion
author Böhm, J.
Decker, W.
Laplagne, S.
Pfister, G.
Steenpaß, A.
Steidel, S.
author_facet Böhm, J.
Decker, W.
Laplagne, S.
Pfister, G.
Steenpaß, A.
Steidel, S.
author_sort Böhm, J.
title Parallel algorithms for normalization
title_short Parallel algorithms for normalization
title_full Parallel algorithms for normalization
title_fullStr Parallel algorithms for normalization
title_full_unstemmed Parallel algorithms for normalization
title_sort parallel algorithms for normalization
publishDate 2013
url http://hdl.handle.net/20.500.12110/paper_07477171_v51_n_p99_Bohm
work_keys_str_mv AT bohmj parallelalgorithmsfornormalization
AT deckerw parallelalgorithmsfornormalization
AT laplagnes parallelalgorithmsfornormalization
AT pfisterg parallelalgorithmsfornormalization
AT steenpaßa parallelalgorithmsfornormalization
AT steidels parallelalgorithmsfornormalization
_version_ 1769810338927083520