Comments on the U (2) noncommutative instanton
We discuss the 't Hoof ansatz for instanton solutions in noncommutative U (2) Yang-Mills theory. We show that the extension of the ansatz leading to singular solutions in the commutative case, yields to non self-dual (or self-antidual) configurations in noncommutative space-time. A proposal lea...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | Artículo publishedVersion |
Lenguaje: | Inglés |
Publicado: |
2001
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_03702693_v515_n1-2_p206_Correa |
Aporte de: |
id |
paperaa:paper_03702693_v515_n1-2_p206_Correa |
---|---|
record_format |
dspace |
spelling |
paperaa:paper_03702693_v515_n1-2_p206_Correa2023-06-12T16:47:46Z Comments on the U (2) noncommutative instanton Phys Lett Sect B Nucl Elem Part High-Energy Phys 2001;515(1-2):206-212 Correa, D.H. Lozano, G. Moreno, E.F. Schaposnik, F.A. article calculation cosmological phenomena elementary particle mathematical analysis space theory time We discuss the 't Hoof ansatz for instanton solutions in noncommutative U (2) Yang-Mills theory. We show that the extension of the ansatz leading to singular solutions in the commutative case, yields to non self-dual (or self-antidual) configurations in noncommutative space-time. A proposal leading to selfdual solutions with Q = 1 topological charge (the equivalent of the regular BPST ansatz) can be engineered, but in that case the gauge field and the curvature are not Hermitian (although the resulting Lagrangian is real). © 2001 Published by Elsevier Science B.V. 2001 info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion application/pdf eng info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_03702693_v515_n1-2_p206_Correa |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
language |
Inglés |
orig_language_str_mv |
eng |
topic |
article calculation cosmological phenomena elementary particle mathematical analysis space theory time |
spellingShingle |
article calculation cosmological phenomena elementary particle mathematical analysis space theory time Correa, D.H. Lozano, G. Moreno, E.F. Schaposnik, F.A. Comments on the U (2) noncommutative instanton |
topic_facet |
article calculation cosmological phenomena elementary particle mathematical analysis space theory time |
description |
We discuss the 't Hoof ansatz for instanton solutions in noncommutative U (2) Yang-Mills theory. We show that the extension of the ansatz leading to singular solutions in the commutative case, yields to non self-dual (or self-antidual) configurations in noncommutative space-time. A proposal leading to selfdual solutions with Q = 1 topological charge (the equivalent of the regular BPST ansatz) can be engineered, but in that case the gauge field and the curvature are not Hermitian (although the resulting Lagrangian is real). © 2001 Published by Elsevier Science B.V. |
format |
Artículo Artículo publishedVersion |
author |
Correa, D.H. Lozano, G. Moreno, E.F. Schaposnik, F.A. |
author_facet |
Correa, D.H. Lozano, G. Moreno, E.F. Schaposnik, F.A. |
author_sort |
Correa, D.H. |
title |
Comments on the U (2) noncommutative instanton |
title_short |
Comments on the U (2) noncommutative instanton |
title_full |
Comments on the U (2) noncommutative instanton |
title_fullStr |
Comments on the U (2) noncommutative instanton |
title_full_unstemmed |
Comments on the U (2) noncommutative instanton |
title_sort |
comments on the u (2) noncommutative instanton |
publishDate |
2001 |
url |
http://hdl.handle.net/20.500.12110/paper_03702693_v515_n1-2_p206_Correa |
work_keys_str_mv |
AT correadh commentsontheu2noncommutativeinstanton AT lozanog commentsontheu2noncommutativeinstanton AT morenoef commentsontheu2noncommutativeinstanton AT schaposnikfa commentsontheu2noncommutativeinstanton |
_version_ |
1769810288510500864 |