Accuracy of Lattice Translates of Several Multidimensional Refinable Functions
Complex-valued functionsf1,...,fronRdarerefinableif they are linear combinations of finitely many of the rescaled and translated functionsfi(Ax-k), where the translateskare taken along a latticeΓ⊂RdandAis adilation matrixthat expansively mapsΓinto itself. Refinable functions satisfy arefinement equa...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | Artículo publishedVersion |
Lenguaje: | Inglés |
Publicado: |
1998
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00219045_v95_n1_p5_Cabrelli |
Aporte de: |
id |
paperaa:paper_00219045_v95_n1_p5_Cabrelli |
---|---|
record_format |
dspace |
spelling |
paperaa:paper_00219045_v95_n1_p5_Cabrelli2023-06-12T16:42:40Z Accuracy of Lattice Translates of Several Multidimensional Refinable Functions J. Approx. Theory 1998;95(1):5-52 Cabrelli, C. Heil, C. Molter, U. Accuracy; approximation by translates; dilation equations; dilation matrix; multidimensional refinable functions; multidimensional wavelets; multiwavelets; refinement equations; refinable functions; shift invariant spaces; wavelets Complex-valued functionsf1,...,fronRdarerefinableif they are linear combinations of finitely many of the rescaled and translated functionsfi(Ax-k), where the translateskare taken along a latticeΓ⊂RdandAis adilation matrixthat expansively mapsΓinto itself. Refinable functions satisfy arefinement equationf(x)=∑k∈Λckf(Ax-k), whereΛis a finite subset ofΓ, theckarer×rmatrices, andf(x)=(f1(x),...,fr(x))T. Theaccuracyoffis the highest degreepsuch that all multivariate polynomialsqwith degree(q)<pare exactly reproduced from linear combinations of translates off1,...,fralong the latticeΓ. In this paper, we determine the accuracypfrom the matricesck. Moreover, we determine explicitly the coefficientsyα,i(k) such thatxα=∑ri=1∑ k∈Γyα,i(k)fi(x+k). These coefficients are multivariate polynomialsyα,i(x) of degree α evaluated at lattice pointsk∈1. © 1998 Academic Press. Fil:Cabrelli, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Molter, U. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 1998 info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion application/pdf eng info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00219045_v95_n1_p5_Cabrelli |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
language |
Inglés |
orig_language_str_mv |
eng |
topic |
Accuracy; approximation by translates; dilation equations; dilation matrix; multidimensional refinable functions; multidimensional wavelets; multiwavelets; refinement equations; refinable functions; shift invariant spaces; wavelets |
spellingShingle |
Accuracy; approximation by translates; dilation equations; dilation matrix; multidimensional refinable functions; multidimensional wavelets; multiwavelets; refinement equations; refinable functions; shift invariant spaces; wavelets Cabrelli, C. Heil, C. Molter, U. Accuracy of Lattice Translates of Several Multidimensional Refinable Functions |
topic_facet |
Accuracy; approximation by translates; dilation equations; dilation matrix; multidimensional refinable functions; multidimensional wavelets; multiwavelets; refinement equations; refinable functions; shift invariant spaces; wavelets |
description |
Complex-valued functionsf1,...,fronRdarerefinableif they are linear combinations of finitely many of the rescaled and translated functionsfi(Ax-k), where the translateskare taken along a latticeΓ⊂RdandAis adilation matrixthat expansively mapsΓinto itself. Refinable functions satisfy arefinement equationf(x)=∑k∈Λckf(Ax-k), whereΛis a finite subset ofΓ, theckarer×rmatrices, andf(x)=(f1(x),...,fr(x))T. Theaccuracyoffis the highest degreepsuch that all multivariate polynomialsqwith degree(q)<pare exactly reproduced from linear combinations of translates off1,...,fralong the latticeΓ. In this paper, we determine the accuracypfrom the matricesck. Moreover, we determine explicitly the coefficientsyα,i(k) such thatxα=∑ri=1∑ k∈Γyα,i(k)fi(x+k). These coefficients are multivariate polynomialsyα,i(x) of degree α evaluated at lattice pointsk∈1. © 1998 Academic Press. |
format |
Artículo Artículo publishedVersion |
author |
Cabrelli, C. Heil, C. Molter, U. |
author_facet |
Cabrelli, C. Heil, C. Molter, U. |
author_sort |
Cabrelli, C. |
title |
Accuracy of Lattice Translates of Several Multidimensional Refinable Functions |
title_short |
Accuracy of Lattice Translates of Several Multidimensional Refinable Functions |
title_full |
Accuracy of Lattice Translates of Several Multidimensional Refinable Functions |
title_fullStr |
Accuracy of Lattice Translates of Several Multidimensional Refinable Functions |
title_full_unstemmed |
Accuracy of Lattice Translates of Several Multidimensional Refinable Functions |
title_sort |
accuracy of lattice translates of several multidimensional refinable functions |
publishDate |
1998 |
url |
http://hdl.handle.net/20.500.12110/paper_00219045_v95_n1_p5_Cabrelli |
work_keys_str_mv |
AT cabrellic accuracyoflatticetranslatesofseveralmultidimensionalrefinablefunctions AT heilc accuracyoflatticetranslatesofseveralmultidimensionalrefinablefunctions AT molteru accuracyoflatticetranslatesofseveralmultidimensionalrefinablefunctions |
_version_ |
1769810013674536960 |