Optimization of resistive switching performance of metal-manganite oxide interfaces by a multipulse protocol

We explore different resistance states of La 0.325Pr 0.300 Ca 0.375 MnO 3- Ti interfaces as prototypes of non-volatile memory devices at room temperature. In addition to high and low resistance states accessible through bipolar pulsing with one pulse, higher resistance states can be obtained by repe...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ghenzi, N., Snchez, M.J., Rozenberg, M.J., Stoliar, P., Marlasca, F.G., Rubi, D., Levy, P.
Formato: Artículo publishedVersion
Lenguaje:Inglés
Publicado: 2012
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00218979_v111_n8_p_Ghenzi
Aporte de:
id paperaa:paper_00218979_v111_n8_p_Ghenzi
record_format dspace
spelling paperaa:paper_00218979_v111_n8_p_Ghenzi2023-06-12T16:42:36Z Optimization of resistive switching performance of metal-manganite oxide interfaces by a multipulse protocol J Appl Phys 2012;111(8) Ghenzi, N. Snchez, M.J. Rozenberg, M.J. Stoliar, P. Marlasca, F.G. Rubi, D. Levy, P. High resistance High-resistance state Low-resistance state Model simulation Multipulses Nonvolatile memory devices Oxide interfaces Resistance state Resistance values Resistive switching Room temperature Time constants Computer simulation Interface states Manganese oxide Experiments We explore different resistance states of La 0.325Pr 0.300 Ca 0.375 MnO 3- Ti interfaces as prototypes of non-volatile memory devices at room temperature. In addition to high and low resistance states accessible through bipolar pulsing with one pulse, higher resistance states can be obtained by repeatedly pulsing with a single polarity. The accumulative action of successive pulsing drives the resistance towards saturation, the time constant being a strong function of the pulsing amplitude. The experiments reveal that the pulsing amplitude and the number of applied pulses necessary to reach a target high resistance value appear to be in an exponential relationship, with a rate that results independent of the resistance value. Model simulations confirm these results and provide the oxygen vacancy profiles associated to the high resistance states obtained in the experiments. © 2012 American Institute of Physics. Fil:Rozenberg, M.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Rubi, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Levy, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2012 info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion application/pdf eng info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00218979_v111_n8_p_Ghenzi
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
language Inglés
orig_language_str_mv eng
topic High resistance
High-resistance state
Low-resistance state
Model simulation
Multipulses
Nonvolatile memory devices
Oxide interfaces
Resistance state
Resistance values
Resistive switching
Room temperature
Time constants
Computer simulation
Interface states
Manganese oxide
Experiments
spellingShingle High resistance
High-resistance state
Low-resistance state
Model simulation
Multipulses
Nonvolatile memory devices
Oxide interfaces
Resistance state
Resistance values
Resistive switching
Room temperature
Time constants
Computer simulation
Interface states
Manganese oxide
Experiments
Ghenzi, N.
Snchez, M.J.
Rozenberg, M.J.
Stoliar, P.
Marlasca, F.G.
Rubi, D.
Levy, P.
Optimization of resistive switching performance of metal-manganite oxide interfaces by a multipulse protocol
topic_facet High resistance
High-resistance state
Low-resistance state
Model simulation
Multipulses
Nonvolatile memory devices
Oxide interfaces
Resistance state
Resistance values
Resistive switching
Room temperature
Time constants
Computer simulation
Interface states
Manganese oxide
Experiments
description We explore different resistance states of La 0.325Pr 0.300 Ca 0.375 MnO 3- Ti interfaces as prototypes of non-volatile memory devices at room temperature. In addition to high and low resistance states accessible through bipolar pulsing with one pulse, higher resistance states can be obtained by repeatedly pulsing with a single polarity. The accumulative action of successive pulsing drives the resistance towards saturation, the time constant being a strong function of the pulsing amplitude. The experiments reveal that the pulsing amplitude and the number of applied pulses necessary to reach a target high resistance value appear to be in an exponential relationship, with a rate that results independent of the resistance value. Model simulations confirm these results and provide the oxygen vacancy profiles associated to the high resistance states obtained in the experiments. © 2012 American Institute of Physics.
format Artículo
Artículo
publishedVersion
author Ghenzi, N.
Snchez, M.J.
Rozenberg, M.J.
Stoliar, P.
Marlasca, F.G.
Rubi, D.
Levy, P.
author_facet Ghenzi, N.
Snchez, M.J.
Rozenberg, M.J.
Stoliar, P.
Marlasca, F.G.
Rubi, D.
Levy, P.
author_sort Ghenzi, N.
title Optimization of resistive switching performance of metal-manganite oxide interfaces by a multipulse protocol
title_short Optimization of resistive switching performance of metal-manganite oxide interfaces by a multipulse protocol
title_full Optimization of resistive switching performance of metal-manganite oxide interfaces by a multipulse protocol
title_fullStr Optimization of resistive switching performance of metal-manganite oxide interfaces by a multipulse protocol
title_full_unstemmed Optimization of resistive switching performance of metal-manganite oxide interfaces by a multipulse protocol
title_sort optimization of resistive switching performance of metal-manganite oxide interfaces by a multipulse protocol
publishDate 2012
url http://hdl.handle.net/20.500.12110/paper_00218979_v111_n8_p_Ghenzi
work_keys_str_mv AT ghenzin optimizationofresistiveswitchingperformanceofmetalmanganiteoxideinterfacesbyamultipulseprotocol
AT snchezmj optimizationofresistiveswitchingperformanceofmetalmanganiteoxideinterfacesbyamultipulseprotocol
AT rozenbergmj optimizationofresistiveswitchingperformanceofmetalmanganiteoxideinterfacesbyamultipulseprotocol
AT stoliarp optimizationofresistiveswitchingperformanceofmetalmanganiteoxideinterfacesbyamultipulseprotocol
AT marlascafg optimizationofresistiveswitchingperformanceofmetalmanganiteoxideinterfacesbyamultipulseprotocol
AT rubid optimizationofresistiveswitchingperformanceofmetalmanganiteoxideinterfacesbyamultipulseprotocol
AT levyp optimizationofresistiveswitchingperformanceofmetalmanganiteoxideinterfacesbyamultipulseprotocol
_version_ 1769810080097632256