Hochschild (Co)homology of differential operators rings
We show that the Hochschild homology of a differential operator k-algebra E = A#fU(g) is the homology of a deformation of the Chevalley-Eilenberg complex of g with coefficients in (M ⊗ Ā* b*). Moreover, when A is smooth and k is a characteristic zero field, we obtain a type of Hochschild-Kostant-Ros...
Guardado en:
Autores principales: | Guccione, J.A., Guccione, J.J. |
---|---|
Formato: | Artículo publishedVersion |
Lenguaje: | Inglés |
Publicado: |
2001
|
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00218693_v243_n2_p596_Guccione |
Aporte de: |
Ejemplares similares
-
Hochschild (Co)homology of differential operators rings
por: Guccione, J.A., et al.
Publicado: (2001) -
Hochschild (Co)homology of differential operators rings
por: Guccione, J.A., et al. -
Hochschild (Co)homology of differential operators rings
por: Guccione, Jorge Alberto, et al.
Publicado: (2001) -
Hochschild (Co)homology of hopf crossed products
por: Guccione, J.A., et al. -
Decomposition of the Hochschild and cyclic homology of commutative differential graded algebras
por: Cortiñas, G., et al.
Publicado: (1992)