Hochschild (Co)homology of differential operators rings

We show that the Hochschild homology of a differential operator k-algebra E = A#fU(g) is the homology of a deformation of the Chevalley-Eilenberg complex of g with coefficients in (M ⊗ Ā* b*). Moreover, when A is smooth and k is a characteristic zero field, we obtain a type of Hochschild-Kostant-Ros...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Guccione, J.A., Guccione, J.J.
Formato: Artículo publishedVersion
Lenguaje:Inglés
Publicado: 2001
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00218693_v243_n2_p596_Guccione
Aporte de:
id paperaa:paper_00218693_v243_n2_p596_Guccione
record_format dspace
spelling paperaa:paper_00218693_v243_n2_p596_Guccione2023-06-12T16:42:21Z Hochschild (Co)homology of differential operators rings J. Algebra 2001;243(2):596-614 Guccione, J.A. Guccione, J.J. We show that the Hochschild homology of a differential operator k-algebra E = A#fU(g) is the homology of a deformation of the Chevalley-Eilenberg complex of g with coefficients in (M ⊗ Ā* b*). Moreover, when A is smooth and k is a characteristic zero field, we obtain a type of Hochschild-Kostant-Rosenberg theorem for these algebras. When A = k our complex reduces to the one obtained by C. Kassel (1988, Invent. Math. 91, 221-251) for the homology of filtrated algebras whose associated graded algebras are symmetric algebras. In the last section we give similar results for the cohomology. © 2001 Academic Press. Fil:Guccione, J.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Guccione, J.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2001 info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion application/pdf eng info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00218693_v243_n2_p596_Guccione
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
language Inglés
orig_language_str_mv eng
description We show that the Hochschild homology of a differential operator k-algebra E = A#fU(g) is the homology of a deformation of the Chevalley-Eilenberg complex of g with coefficients in (M ⊗ Ā* b*). Moreover, when A is smooth and k is a characteristic zero field, we obtain a type of Hochschild-Kostant-Rosenberg theorem for these algebras. When A = k our complex reduces to the one obtained by C. Kassel (1988, Invent. Math. 91, 221-251) for the homology of filtrated algebras whose associated graded algebras are symmetric algebras. In the last section we give similar results for the cohomology. © 2001 Academic Press.
format Artículo
Artículo
publishedVersion
author Guccione, J.A.
Guccione, J.J.
spellingShingle Guccione, J.A.
Guccione, J.J.
Hochschild (Co)homology of differential operators rings
author_facet Guccione, J.A.
Guccione, J.J.
author_sort Guccione, J.A.
title Hochschild (Co)homology of differential operators rings
title_short Hochschild (Co)homology of differential operators rings
title_full Hochschild (Co)homology of differential operators rings
title_fullStr Hochschild (Co)homology of differential operators rings
title_full_unstemmed Hochschild (Co)homology of differential operators rings
title_sort hochschild (co)homology of differential operators rings
publishDate 2001
url http://hdl.handle.net/20.500.12110/paper_00218693_v243_n2_p596_Guccione
work_keys_str_mv AT guccioneja hochschildcohomologyofdifferentialoperatorsrings
AT guccionejj hochschildcohomologyofdifferentialoperatorsrings
_version_ 1769810372985880576