id paper:paper_97814577_v_n_p1215_Barber
record_format dspace
spelling paper:paper_97814577_v_n_p1215_Barber2023-06-08T16:37:36Z A Bayesian methodology for soil parameters retrieval from SAR images Barber, Matias Ernesto Perna, Pablo Alejandro Grings, Francisco Matías Karszenbaum, Haydee Jacobo Berlles, Julio C. A. Bayesian retrieval approaches radar remote sensing Soil moisture Bayesian approaches Bayesian methodology Bayesian retrieval Error sources Forward models Radar remote sensing Retrieval models Retrieval procedures SAR data SAR Images Soil moisture retrievals Soil parameters Sources of uncertainty Speckle noise Unbiased estimator Bayesian networks Moisture determination Remote sensing Soil moisture Space optics Synthetic aperture radar Geologic models Soil moisture retrieval from SAR data presents two main sources of uncertainty: terrain heterogeneity and speckle noise. In this paper, these issues will be addressed by using a Bayesian approach. Such a Bayesian approach (1) needs only a forward model (no retrieval model required), (2) gives the optimal unbiased estimator for the soil moisture and its error and (3) can include as many error sources as required. Through numerical simulations, a standard Oh retrieval procedure and the Bayesian approach were tested for different number of looks (n = 3 and n = 64). The results indicate that for a large number of looks the region of validity of both approaches are similar. Furthermore, contrary to the Oh model retrieval procedure which is only valid in a bounded region of the (hh, vv, hv)-space, the Bayesian approach gives an estimation of soil moisture and its error for any combination of hh, vv and hv, so enlarging the region where the retrieval is possible. © 2011 IEEE. Fil:Barber, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Perna, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Grings, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Karszenbaum, H. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Jacobo-Berlles, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2011 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97814577_v_n_p1215_Barber http://hdl.handle.net/20.500.12110/paper_97814577_v_n_p1215_Barber
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Bayesian retrieval approaches
radar remote sensing
Soil moisture
Bayesian approaches
Bayesian methodology
Bayesian retrieval
Error sources
Forward models
Radar remote sensing
Retrieval models
Retrieval procedures
SAR data
SAR Images
Soil moisture retrievals
Soil parameters
Sources of uncertainty
Speckle noise
Unbiased estimator
Bayesian networks
Moisture determination
Remote sensing
Soil moisture
Space optics
Synthetic aperture radar
Geologic models
spellingShingle Bayesian retrieval approaches
radar remote sensing
Soil moisture
Bayesian approaches
Bayesian methodology
Bayesian retrieval
Error sources
Forward models
Radar remote sensing
Retrieval models
Retrieval procedures
SAR data
SAR Images
Soil moisture retrievals
Soil parameters
Sources of uncertainty
Speckle noise
Unbiased estimator
Bayesian networks
Moisture determination
Remote sensing
Soil moisture
Space optics
Synthetic aperture radar
Geologic models
Barber, Matias Ernesto
Perna, Pablo Alejandro
Grings, Francisco Matías
Karszenbaum, Haydee
Jacobo Berlles, Julio C. A.
A Bayesian methodology for soil parameters retrieval from SAR images
topic_facet Bayesian retrieval approaches
radar remote sensing
Soil moisture
Bayesian approaches
Bayesian methodology
Bayesian retrieval
Error sources
Forward models
Radar remote sensing
Retrieval models
Retrieval procedures
SAR data
SAR Images
Soil moisture retrievals
Soil parameters
Sources of uncertainty
Speckle noise
Unbiased estimator
Bayesian networks
Moisture determination
Remote sensing
Soil moisture
Space optics
Synthetic aperture radar
Geologic models
description Soil moisture retrieval from SAR data presents two main sources of uncertainty: terrain heterogeneity and speckle noise. In this paper, these issues will be addressed by using a Bayesian approach. Such a Bayesian approach (1) needs only a forward model (no retrieval model required), (2) gives the optimal unbiased estimator for the soil moisture and its error and (3) can include as many error sources as required. Through numerical simulations, a standard Oh retrieval procedure and the Bayesian approach were tested for different number of looks (n = 3 and n = 64). The results indicate that for a large number of looks the region of validity of both approaches are similar. Furthermore, contrary to the Oh model retrieval procedure which is only valid in a bounded region of the (hh, vv, hv)-space, the Bayesian approach gives an estimation of soil moisture and its error for any combination of hh, vv and hv, so enlarging the region where the retrieval is possible. © 2011 IEEE.
author Barber, Matias Ernesto
Perna, Pablo Alejandro
Grings, Francisco Matías
Karszenbaum, Haydee
Jacobo Berlles, Julio C. A.
author_facet Barber, Matias Ernesto
Perna, Pablo Alejandro
Grings, Francisco Matías
Karszenbaum, Haydee
Jacobo Berlles, Julio C. A.
author_sort Barber, Matias Ernesto
title A Bayesian methodology for soil parameters retrieval from SAR images
title_short A Bayesian methodology for soil parameters retrieval from SAR images
title_full A Bayesian methodology for soil parameters retrieval from SAR images
title_fullStr A Bayesian methodology for soil parameters retrieval from SAR images
title_full_unstemmed A Bayesian methodology for soil parameters retrieval from SAR images
title_sort bayesian methodology for soil parameters retrieval from sar images
publishDate 2011
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97814577_v_n_p1215_Barber
http://hdl.handle.net/20.500.12110/paper_97814577_v_n_p1215_Barber
work_keys_str_mv AT barbermatiasernesto abayesianmethodologyforsoilparametersretrievalfromsarimages
AT pernapabloalejandro abayesianmethodologyforsoilparametersretrievalfromsarimages
AT gringsfranciscomatias abayesianmethodologyforsoilparametersretrievalfromsarimages
AT karszenbaumhaydee abayesianmethodologyforsoilparametersretrievalfromsarimages
AT jacoboberllesjulioca abayesianmethodologyforsoilparametersretrievalfromsarimages
AT barbermatiasernesto bayesianmethodologyforsoilparametersretrievalfromsarimages
AT pernapabloalejandro bayesianmethodologyforsoilparametersretrievalfromsarimages
AT gringsfranciscomatias bayesianmethodologyforsoilparametersretrievalfromsarimages
AT karszenbaumhaydee bayesianmethodologyforsoilparametersretrievalfromsarimages
AT jacoboberllesjulioca bayesianmethodologyforsoilparametersretrievalfromsarimages
_version_ 1768543632670851072