A Bayesian methodology for soil parameters retrieval from SAR images
Soil moisture retrieval from SAR data presents two main sources of uncertainty: terrain heterogeneity and speckle noise. In this paper, these issues will be addressed by using a Bayesian approach. Such a Bayesian approach (1) needs only a forward model (no retrieval model required), (2) gives the op...
Autores principales: | , , , , |
---|---|
Publicado: |
2011
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97814577_v_n_p1215_Barber http://hdl.handle.net/20.500.12110/paper_97814577_v_n_p1215_Barber |
Aporte de: |
id |
paper:paper_97814577_v_n_p1215_Barber |
---|---|
record_format |
dspace |
spelling |
paper:paper_97814577_v_n_p1215_Barber2023-06-08T16:37:36Z A Bayesian methodology for soil parameters retrieval from SAR images Barber, Matias Ernesto Perna, Pablo Alejandro Grings, Francisco Matías Karszenbaum, Haydee Jacobo Berlles, Julio C. A. Bayesian retrieval approaches radar remote sensing Soil moisture Bayesian approaches Bayesian methodology Bayesian retrieval Error sources Forward models Radar remote sensing Retrieval models Retrieval procedures SAR data SAR Images Soil moisture retrievals Soil parameters Sources of uncertainty Speckle noise Unbiased estimator Bayesian networks Moisture determination Remote sensing Soil moisture Space optics Synthetic aperture radar Geologic models Soil moisture retrieval from SAR data presents two main sources of uncertainty: terrain heterogeneity and speckle noise. In this paper, these issues will be addressed by using a Bayesian approach. Such a Bayesian approach (1) needs only a forward model (no retrieval model required), (2) gives the optimal unbiased estimator for the soil moisture and its error and (3) can include as many error sources as required. Through numerical simulations, a standard Oh retrieval procedure and the Bayesian approach were tested for different number of looks (n = 3 and n = 64). The results indicate that for a large number of looks the region of validity of both approaches are similar. Furthermore, contrary to the Oh model retrieval procedure which is only valid in a bounded region of the (hh, vv, hv)-space, the Bayesian approach gives an estimation of soil moisture and its error for any combination of hh, vv and hv, so enlarging the region where the retrieval is possible. © 2011 IEEE. Fil:Barber, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Perna, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Grings, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Karszenbaum, H. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Jacobo-Berlles, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2011 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97814577_v_n_p1215_Barber http://hdl.handle.net/20.500.12110/paper_97814577_v_n_p1215_Barber |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Bayesian retrieval approaches radar remote sensing Soil moisture Bayesian approaches Bayesian methodology Bayesian retrieval Error sources Forward models Radar remote sensing Retrieval models Retrieval procedures SAR data SAR Images Soil moisture retrievals Soil parameters Sources of uncertainty Speckle noise Unbiased estimator Bayesian networks Moisture determination Remote sensing Soil moisture Space optics Synthetic aperture radar Geologic models |
spellingShingle |
Bayesian retrieval approaches radar remote sensing Soil moisture Bayesian approaches Bayesian methodology Bayesian retrieval Error sources Forward models Radar remote sensing Retrieval models Retrieval procedures SAR data SAR Images Soil moisture retrievals Soil parameters Sources of uncertainty Speckle noise Unbiased estimator Bayesian networks Moisture determination Remote sensing Soil moisture Space optics Synthetic aperture radar Geologic models Barber, Matias Ernesto Perna, Pablo Alejandro Grings, Francisco Matías Karszenbaum, Haydee Jacobo Berlles, Julio C. A. A Bayesian methodology for soil parameters retrieval from SAR images |
topic_facet |
Bayesian retrieval approaches radar remote sensing Soil moisture Bayesian approaches Bayesian methodology Bayesian retrieval Error sources Forward models Radar remote sensing Retrieval models Retrieval procedures SAR data SAR Images Soil moisture retrievals Soil parameters Sources of uncertainty Speckle noise Unbiased estimator Bayesian networks Moisture determination Remote sensing Soil moisture Space optics Synthetic aperture radar Geologic models |
description |
Soil moisture retrieval from SAR data presents two main sources of uncertainty: terrain heterogeneity and speckle noise. In this paper, these issues will be addressed by using a Bayesian approach. Such a Bayesian approach (1) needs only a forward model (no retrieval model required), (2) gives the optimal unbiased estimator for the soil moisture and its error and (3) can include as many error sources as required. Through numerical simulations, a standard Oh retrieval procedure and the Bayesian approach were tested for different number of looks (n = 3 and n = 64). The results indicate that for a large number of looks the region of validity of both approaches are similar. Furthermore, contrary to the Oh model retrieval procedure which is only valid in a bounded region of the (hh, vv, hv)-space, the Bayesian approach gives an estimation of soil moisture and its error for any combination of hh, vv and hv, so enlarging the region where the retrieval is possible. © 2011 IEEE. |
author |
Barber, Matias Ernesto Perna, Pablo Alejandro Grings, Francisco Matías Karszenbaum, Haydee Jacobo Berlles, Julio C. A. |
author_facet |
Barber, Matias Ernesto Perna, Pablo Alejandro Grings, Francisco Matías Karszenbaum, Haydee Jacobo Berlles, Julio C. A. |
author_sort |
Barber, Matias Ernesto |
title |
A Bayesian methodology for soil parameters retrieval from SAR images |
title_short |
A Bayesian methodology for soil parameters retrieval from SAR images |
title_full |
A Bayesian methodology for soil parameters retrieval from SAR images |
title_fullStr |
A Bayesian methodology for soil parameters retrieval from SAR images |
title_full_unstemmed |
A Bayesian methodology for soil parameters retrieval from SAR images |
title_sort |
bayesian methodology for soil parameters retrieval from sar images |
publishDate |
2011 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97814577_v_n_p1215_Barber http://hdl.handle.net/20.500.12110/paper_97814577_v_n_p1215_Barber |
work_keys_str_mv |
AT barbermatiasernesto abayesianmethodologyforsoilparametersretrievalfromsarimages AT pernapabloalejandro abayesianmethodologyforsoilparametersretrievalfromsarimages AT gringsfranciscomatias abayesianmethodologyforsoilparametersretrievalfromsarimages AT karszenbaumhaydee abayesianmethodologyforsoilparametersretrievalfromsarimages AT jacoboberllesjulioca abayesianmethodologyforsoilparametersretrievalfromsarimages AT barbermatiasernesto bayesianmethodologyforsoilparametersretrievalfromsarimages AT pernapabloalejandro bayesianmethodologyforsoilparametersretrievalfromsarimages AT gringsfranciscomatias bayesianmethodologyforsoilparametersretrievalfromsarimages AT karszenbaumhaydee bayesianmethodologyforsoilparametersretrievalfromsarimages AT jacoboberllesjulioca bayesianmethodologyforsoilparametersretrievalfromsarimages |
_version_ |
1768543632670851072 |