Traces for fractional Sobolev spaces with variable exponents
In this note we prove a trace theorem in fractional spaces with variable exponents. To be more precise, we show that if p:Ω×Ω→ (1,∞) and q:∂Ω→(1,1) are continuous functions such that (n - 1)p(x, x)/n - sp(x, x) > q(x) in∂Ω∩x ∈ Ω: n-sp(x, x) > 0), then the inequality fLq(·(∂Ω≤C(fLp(·(Ω)...
Guardado en:
Publicado: |
2017
|
---|---|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_2538225X_v2_n4_p435_DelPezzo http://hdl.handle.net/20.500.12110/paper_2538225X_v2_n4_p435_DelPezzo |
Aporte de: |
Ejemplares similares
-
Traces for fractional Sobolev spaces with variable exponents
por: Del Pezzo, L.M., et al. -
Fractional Sobolev spaces with variable exponents and fractional p(X)-Laplacians
Publicado: (2017) -
Fractional Sobolev spaces with variable exponents and fractional p(X)-Laplacians
por: Kaufmann, U., et al. -
Fractional Sobolev spaces with variable exponents and fractional p(x)-Laplacians
por: Kaufmann, Uriel, et al.
Publicado: (2025) -
On the Sobolev trace Theorem for variable exponent spaces in the critical range
por: Fernandez Bonder, Julian, et al.
Publicado: (2014)