Traces for fractional Sobolev spaces with variable exponents
In this note we prove a trace theorem in fractional spaces with variable exponents. To be more precise, we show that if p:Ω×Ω→ (1,∞) and q:∂Ω→(1,1) are continuous functions such that (n - 1)p(x, x)/n - sp(x, x) > q(x) in∂Ω∩x ∈ Ω: n-sp(x, x) > 0), then the inequality fLq(·(∂Ω≤C(fLp(·(Ω)...
Guardado en:
Publicado: |
2017
|
---|---|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_2538225X_v2_n4_p435_DelPezzo http://hdl.handle.net/20.500.12110/paper_2538225X_v2_n4_p435_DelPezzo |
Aporte de: |
id |
paper:paper_2538225X_v2_n4_p435_DelPezzo |
---|---|
record_format |
dspace |
spelling |
paper:paper_2538225X_v2_n4_p435_DelPezzo2023-06-08T16:36:49Z Traces for fractional Sobolev spaces with variable exponents Fractional operators p-Laplacian Variable exponents In this note we prove a trace theorem in fractional spaces with variable exponents. To be more precise, we show that if p:Ω×Ω→ (1,∞) and q:∂Ω→(1,1) are continuous functions such that (n - 1)p(x, x)/n - sp(x, x) > q(x) in∂Ω∩x ∈ Ω: n-sp(x, x) > 0), then the inequality fLq(·(∂Ω≤C(fLp(·(Ω)+|f|s, p(middot;,middot;) denotes the fractional seminorm with variable exponent, that is given by|f|s, p(middot;,middot;):=inf(λ > 0∫Ω∫Ω |f(x) - f(y)|p(x, y)/λp(x, y)|x-y|n+sp(x, y) dxdy < 1) and f Lq(·)(∂Ω) and f Lp(·)(Ω) are the usual Lebesgue norms with variable exponent. © 2016 by the Tusi Mathematical Research Group. 2017 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_2538225X_v2_n4_p435_DelPezzo http://hdl.handle.net/20.500.12110/paper_2538225X_v2_n4_p435_DelPezzo |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Fractional operators p-Laplacian Variable exponents |
spellingShingle |
Fractional operators p-Laplacian Variable exponents Traces for fractional Sobolev spaces with variable exponents |
topic_facet |
Fractional operators p-Laplacian Variable exponents |
description |
In this note we prove a trace theorem in fractional spaces with variable exponents. To be more precise, we show that if p:Ω×Ω→ (1,∞) and q:∂Ω→(1,1) are continuous functions such that (n - 1)p(x, x)/n - sp(x, x) > q(x) in∂Ω∩x ∈ Ω: n-sp(x, x) > 0), then the inequality fLq(·(∂Ω≤C(fLp(·(Ω)+|f|s, p(middot;,middot;) denotes the fractional seminorm with variable exponent, that is given by|f|s, p(middot;,middot;):=inf(λ > 0∫Ω∫Ω |f(x) - f(y)|p(x, y)/λp(x, y)|x-y|n+sp(x, y) dxdy < 1) and f Lq(·)(∂Ω) and f Lp(·)(Ω) are the usual Lebesgue norms with variable exponent. © 2016 by the Tusi Mathematical Research Group. |
title |
Traces for fractional Sobolev spaces with variable exponents |
title_short |
Traces for fractional Sobolev spaces with variable exponents |
title_full |
Traces for fractional Sobolev spaces with variable exponents |
title_fullStr |
Traces for fractional Sobolev spaces with variable exponents |
title_full_unstemmed |
Traces for fractional Sobolev spaces with variable exponents |
title_sort |
traces for fractional sobolev spaces with variable exponents |
publishDate |
2017 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_2538225X_v2_n4_p435_DelPezzo http://hdl.handle.net/20.500.12110/paper_2538225X_v2_n4_p435_DelPezzo |
_version_ |
1768546277271797760 |