Low- and intermediate-energy stopping power of protons and antiprotons in solid targets

In this paper we propose a nonperturbative approximation to electronic stopping power based on the central screened potential of a projectile moving in a free-electron gas, by Nagy and Apagyi [Phys. Rev. A 58, R1653 (1998)PLRAAN1050-294710.1103/PhysRevA.58.R1653]. We used this model to evaluate the...

Descripción completa

Guardado en:
Detalles Bibliográficos
Publicado: 2017
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_24699926_v96_n1_p_Montanari
http://hdl.handle.net/20.500.12110/paper_24699926_v96_n1_p_Montanari
Aporte de:
id paper:paper_24699926_v96_n1_p_Montanari
record_format dspace
spelling paper:paper_24699926_v96_n1_p_Montanari2023-06-08T16:36:05Z Low- and intermediate-energy stopping power of protons and antiprotons in solid targets Electron gas Energy dissipation Germanium Lead Projectiles Antiproton impact Dielectric formalism Electronic stopping power Free electron gas High energy regions Intermediate energies Plasmon excitations Protons and antiprotons Electrons In this paper we propose a nonperturbative approximation to electronic stopping power based on the central screened potential of a projectile moving in a free-electron gas, by Nagy and Apagyi [Phys. Rev. A 58, R1653 (1998)PLRAAN1050-294710.1103/PhysRevA.58.R1653]. We used this model to evaluate the energy loss of protons and antiprotons in ten solid targets: Cr, C, Ni, Be, Ti, Si, Al, Ge, Pb, Li, and Rb. They were chosen as canonicals because they have reliable Wigner-Seitz radius, rs=1.48 to 5.31, which cover most of the possible metallic solids. Present low-velocity results agree well with the experimental data for both proton and antiproton impact. Our formalism describes the binary collision of the projectile and one electron of the free-electron gas. It does not include the collective or plasmon excitations, which are important in the intermediate- and high-velocity regime. The distinguishing feature of this contribution is that by using the present model for low to intermediate energies and the Lindhard dielectric formalism for intermediate to high energies, we describe the stopping due to free-electron gas in an extensive energy range. Moreover, by adding the inner-shell contribution using the shellwise local plasma approximation, we are able to describe all the available experimental data in the low-, intermediate-, and high-energy regions. © 2017 American Physical Society. 2017 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_24699926_v96_n1_p_Montanari http://hdl.handle.net/20.500.12110/paper_24699926_v96_n1_p_Montanari
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Electron gas
Energy dissipation
Germanium
Lead
Projectiles
Antiproton impact
Dielectric formalism
Electronic stopping power
Free electron gas
High energy regions
Intermediate energies
Plasmon excitations
Protons and antiprotons
Electrons
spellingShingle Electron gas
Energy dissipation
Germanium
Lead
Projectiles
Antiproton impact
Dielectric formalism
Electronic stopping power
Free electron gas
High energy regions
Intermediate energies
Plasmon excitations
Protons and antiprotons
Electrons
Low- and intermediate-energy stopping power of protons and antiprotons in solid targets
topic_facet Electron gas
Energy dissipation
Germanium
Lead
Projectiles
Antiproton impact
Dielectric formalism
Electronic stopping power
Free electron gas
High energy regions
Intermediate energies
Plasmon excitations
Protons and antiprotons
Electrons
description In this paper we propose a nonperturbative approximation to electronic stopping power based on the central screened potential of a projectile moving in a free-electron gas, by Nagy and Apagyi [Phys. Rev. A 58, R1653 (1998)PLRAAN1050-294710.1103/PhysRevA.58.R1653]. We used this model to evaluate the energy loss of protons and antiprotons in ten solid targets: Cr, C, Ni, Be, Ti, Si, Al, Ge, Pb, Li, and Rb. They were chosen as canonicals because they have reliable Wigner-Seitz radius, rs=1.48 to 5.31, which cover most of the possible metallic solids. Present low-velocity results agree well with the experimental data for both proton and antiproton impact. Our formalism describes the binary collision of the projectile and one electron of the free-electron gas. It does not include the collective or plasmon excitations, which are important in the intermediate- and high-velocity regime. The distinguishing feature of this contribution is that by using the present model for low to intermediate energies and the Lindhard dielectric formalism for intermediate to high energies, we describe the stopping due to free-electron gas in an extensive energy range. Moreover, by adding the inner-shell contribution using the shellwise local plasma approximation, we are able to describe all the available experimental data in the low-, intermediate-, and high-energy regions. © 2017 American Physical Society.
title Low- and intermediate-energy stopping power of protons and antiprotons in solid targets
title_short Low- and intermediate-energy stopping power of protons and antiprotons in solid targets
title_full Low- and intermediate-energy stopping power of protons and antiprotons in solid targets
title_fullStr Low- and intermediate-energy stopping power of protons and antiprotons in solid targets
title_full_unstemmed Low- and intermediate-energy stopping power of protons and antiprotons in solid targets
title_sort low- and intermediate-energy stopping power of protons and antiprotons in solid targets
publishDate 2017
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_24699926_v96_n1_p_Montanari
http://hdl.handle.net/20.500.12110/paper_24699926_v96_n1_p_Montanari
_version_ 1768542480357130240