Plasmonic Photothermal Fluorescence Modulation for Homogeneous Biosensing

Fluorescence readout is uniquely powerful for biological assays and imaging because it combines the detection of specific biotargets with high spatial and temporal resolution. Recently, several strategies for the modulation in time of fluorescence emission have been proven useful to separate the tar...

Descripción completa

Guardado en:
Detalles Bibliográficos
Publicado: 2016
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_23793694_v1_n11_p1351_Pellegrotti
http://hdl.handle.net/20.500.12110/paper_23793694_v1_n11_p1351_Pellegrotti
Aporte de:
id paper:paper_23793694_v1_n11_p1351_Pellegrotti
record_format dspace
spelling paper:paper_23793694_v1_n11_p1351_Pellegrotti2023-06-08T16:35:53Z Plasmonic Photothermal Fluorescence Modulation for Homogeneous Biosensing fluorescence quenching gold nanoparticle gold nanorods plasmonic heating sandwich assay Assays Fluorescence quenching Gold nanoparticles Nanorods Plasmonics Plasmons Surface reactions Fluorescence emission Fluorescence modulation Gold nanorod Molecular fluorescence Plasmonic heating Sandwich assays Spatial and temporal resolutions Temperature sensitive Modulation Fluorescence readout is uniquely powerful for biological assays and imaging because it combines the detection of specific biotargets with high spatial and temporal resolution. Recently, several strategies for the modulation in time of fluorescence emission have been proven useful to separate the target signal from constant background contributions. Here, we investigate the emission modulation of organic fluorophores located in the nanometric vicinity of plasmonically heated gold nanorods and apply it to a novel, all-optical homogeneous biosensing scheme. The combination of plasmonic heating and temperature sensitive molecular fluorescence enables the robust quantification of surface reactions. © 2017 American Chemical Society. 2016 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_23793694_v1_n11_p1351_Pellegrotti http://hdl.handle.net/20.500.12110/paper_23793694_v1_n11_p1351_Pellegrotti
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic fluorescence quenching
gold nanoparticle
gold nanorods
plasmonic heating
sandwich assay
Assays
Fluorescence quenching
Gold nanoparticles
Nanorods
Plasmonics
Plasmons
Surface reactions
Fluorescence emission
Fluorescence modulation
Gold nanorod
Molecular fluorescence
Plasmonic heating
Sandwich assays
Spatial and temporal resolutions
Temperature sensitive
Modulation
spellingShingle fluorescence quenching
gold nanoparticle
gold nanorods
plasmonic heating
sandwich assay
Assays
Fluorescence quenching
Gold nanoparticles
Nanorods
Plasmonics
Plasmons
Surface reactions
Fluorescence emission
Fluorescence modulation
Gold nanorod
Molecular fluorescence
Plasmonic heating
Sandwich assays
Spatial and temporal resolutions
Temperature sensitive
Modulation
Plasmonic Photothermal Fluorescence Modulation for Homogeneous Biosensing
topic_facet fluorescence quenching
gold nanoparticle
gold nanorods
plasmonic heating
sandwich assay
Assays
Fluorescence quenching
Gold nanoparticles
Nanorods
Plasmonics
Plasmons
Surface reactions
Fluorescence emission
Fluorescence modulation
Gold nanorod
Molecular fluorescence
Plasmonic heating
Sandwich assays
Spatial and temporal resolutions
Temperature sensitive
Modulation
description Fluorescence readout is uniquely powerful for biological assays and imaging because it combines the detection of specific biotargets with high spatial and temporal resolution. Recently, several strategies for the modulation in time of fluorescence emission have been proven useful to separate the target signal from constant background contributions. Here, we investigate the emission modulation of organic fluorophores located in the nanometric vicinity of plasmonically heated gold nanorods and apply it to a novel, all-optical homogeneous biosensing scheme. The combination of plasmonic heating and temperature sensitive molecular fluorescence enables the robust quantification of surface reactions. © 2017 American Chemical Society.
title Plasmonic Photothermal Fluorescence Modulation for Homogeneous Biosensing
title_short Plasmonic Photothermal Fluorescence Modulation for Homogeneous Biosensing
title_full Plasmonic Photothermal Fluorescence Modulation for Homogeneous Biosensing
title_fullStr Plasmonic Photothermal Fluorescence Modulation for Homogeneous Biosensing
title_full_unstemmed Plasmonic Photothermal Fluorescence Modulation for Homogeneous Biosensing
title_sort plasmonic photothermal fluorescence modulation for homogeneous biosensing
publishDate 2016
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_23793694_v1_n11_p1351_Pellegrotti
http://hdl.handle.net/20.500.12110/paper_23793694_v1_n11_p1351_Pellegrotti
_version_ 1768546420411858944