Evaluation of a master-slave parallel evolutionary algorithm applied to artificial intelligence for games in the xeon-phi many-core platform

Evolutionary algorithms are non-deterministic metaheuristic methods that emulate the evolution of species in nature to solve optimization, search, and learning problems. This article presents a parallel implementation of evolutionary algorithms on Xeon Phi for developing an artificial intelligence t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Mocskos, Esteban Eduardo
Publicado: 2017
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_18650929_v697_n_p161_Leopold
http://hdl.handle.net/20.500.12110/paper_18650929_v697_n_p161_Leopold
Aporte de:
id paper:paper_18650929_v697_n_p161_Leopold
record_format dspace
spelling paper:paper_18650929_v697_n_p161_Leopold2025-07-30T19:05:17Z Evaluation of a master-slave parallel evolutionary algorithm applied to artificial intelligence for games in the xeon-phi many-core platform Mocskos, Esteban Eduardo Artificial intelligence Evolutionary algorithms Xeon Phi Artificial intelligence Computer architecture Optimization Meta-heuristic methods Micro-benchmarking Parallel evolutionary algorithms Parallel implementations Performance analysis Resource utilizations Technical documentations Xeon Phi Evolutionary algorithms Evolutionary algorithms are non-deterministic metaheuristic methods that emulate the evolution of species in nature to solve optimization, search, and learning problems. This article presents a parallel implementation of evolutionary algorithms on Xeon Phi for developing an artificial intelligence to play the NES Pinball game. The proposed parallel implementation offloads the execution of the fitness function evaluation to Xeon Phi. Multiple evolution schemes are studied to get the most efficient resource utilization. A micro-benchmarking of the Xeon Phi coprocessor is performed to verify the existing technical documentation and obtain detail knowledge of its behavior. Finally, a performance analysis of the proposed parallel evolutionary algorithm is presented, focusing on the characteristics of the evaluated platform. © Springer International Publishing AG 2017. Fil:Mocskos, E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2017 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_18650929_v697_n_p161_Leopold http://hdl.handle.net/20.500.12110/paper_18650929_v697_n_p161_Leopold
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Artificial intelligence
Evolutionary algorithms
Xeon Phi
Artificial intelligence
Computer architecture
Optimization
Meta-heuristic methods
Micro-benchmarking
Parallel evolutionary algorithms
Parallel implementations
Performance analysis
Resource utilizations
Technical documentations
Xeon Phi
Evolutionary algorithms
spellingShingle Artificial intelligence
Evolutionary algorithms
Xeon Phi
Artificial intelligence
Computer architecture
Optimization
Meta-heuristic methods
Micro-benchmarking
Parallel evolutionary algorithms
Parallel implementations
Performance analysis
Resource utilizations
Technical documentations
Xeon Phi
Evolutionary algorithms
Mocskos, Esteban Eduardo
Evaluation of a master-slave parallel evolutionary algorithm applied to artificial intelligence for games in the xeon-phi many-core platform
topic_facet Artificial intelligence
Evolutionary algorithms
Xeon Phi
Artificial intelligence
Computer architecture
Optimization
Meta-heuristic methods
Micro-benchmarking
Parallel evolutionary algorithms
Parallel implementations
Performance analysis
Resource utilizations
Technical documentations
Xeon Phi
Evolutionary algorithms
description Evolutionary algorithms are non-deterministic metaheuristic methods that emulate the evolution of species in nature to solve optimization, search, and learning problems. This article presents a parallel implementation of evolutionary algorithms on Xeon Phi for developing an artificial intelligence to play the NES Pinball game. The proposed parallel implementation offloads the execution of the fitness function evaluation to Xeon Phi. Multiple evolution schemes are studied to get the most efficient resource utilization. A micro-benchmarking of the Xeon Phi coprocessor is performed to verify the existing technical documentation and obtain detail knowledge of its behavior. Finally, a performance analysis of the proposed parallel evolutionary algorithm is presented, focusing on the characteristics of the evaluated platform. © Springer International Publishing AG 2017.
author Mocskos, Esteban Eduardo
author_facet Mocskos, Esteban Eduardo
author_sort Mocskos, Esteban Eduardo
title Evaluation of a master-slave parallel evolutionary algorithm applied to artificial intelligence for games in the xeon-phi many-core platform
title_short Evaluation of a master-slave parallel evolutionary algorithm applied to artificial intelligence for games in the xeon-phi many-core platform
title_full Evaluation of a master-slave parallel evolutionary algorithm applied to artificial intelligence for games in the xeon-phi many-core platform
title_fullStr Evaluation of a master-slave parallel evolutionary algorithm applied to artificial intelligence for games in the xeon-phi many-core platform
title_full_unstemmed Evaluation of a master-slave parallel evolutionary algorithm applied to artificial intelligence for games in the xeon-phi many-core platform
title_sort evaluation of a master-slave parallel evolutionary algorithm applied to artificial intelligence for games in the xeon-phi many-core platform
publishDate 2017
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_18650929_v697_n_p161_Leopold
http://hdl.handle.net/20.500.12110/paper_18650929_v697_n_p161_Leopold
work_keys_str_mv AT mocskosestebaneduardo evaluationofamasterslaveparallelevolutionaryalgorithmappliedtoartificialintelligenceforgamesinthexeonphimanycoreplatform
_version_ 1840326033813798912