Existence and multiplicity of periodic solutions for a generalized hematopoiesis model

A generalization of the nonautonomous Mackey–Glass equation for the regulation of the hematopoiesis with several non-constant delays is studied. Using topological degree methods we prove, under appropriate conditions, the existence of multiple positive periodic solutions. Moreover, we show that the...

Descripción completa

Detalles Bibliográficos
Autores principales: Amster, Pablo Gustavo, Balderrama, Rocio Celeste
Publicado: 2017
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15985865_v55_n1-2_p591_Amster
http://hdl.handle.net/20.500.12110/paper_15985865_v55_n1-2_p591_Amster
Aporte de:
id paper:paper_15985865_v55_n1-2_p591_Amster
record_format dspace
spelling paper:paper_15985865_v55_n1-2_p591_Amster2023-06-08T16:24:56Z Existence and multiplicity of periodic solutions for a generalized hematopoiesis model Amster, Pablo Gustavo Balderrama, Rocio Celeste Degree theory Global attractor Hematopoiesis Multiplicity Nonlinear nonautonomous delay differential equations Positive periodic solutions Blood Differential equations Nonlinear equations Topology Degree theory Global attractor Hematopoiesis Multiplicity Nonlinear nonautonomous delay differential equations Positive periodic solution Problem solving A generalization of the nonautonomous Mackey–Glass equation for the regulation of the hematopoiesis with several non-constant delays is studied. Using topological degree methods we prove, under appropriate conditions, the existence of multiple positive periodic solutions. Moreover, we show that the conditions are necessary, in the sense that if some sort of complementary conditions are assumed then the trivial equilibrium is a global attractor for the positive solutions and hence periodic solutions do not exist. © 2016, Korean Society for Computational and Applied Mathematics. Fil:Amster, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Balderrama, R. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2017 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15985865_v55_n1-2_p591_Amster http://hdl.handle.net/20.500.12110/paper_15985865_v55_n1-2_p591_Amster
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Degree theory
Global attractor
Hematopoiesis
Multiplicity
Nonlinear nonautonomous delay differential equations
Positive periodic solutions
Blood
Differential equations
Nonlinear equations
Topology
Degree theory
Global attractor
Hematopoiesis
Multiplicity
Nonlinear nonautonomous delay differential equations
Positive periodic solution
Problem solving
spellingShingle Degree theory
Global attractor
Hematopoiesis
Multiplicity
Nonlinear nonautonomous delay differential equations
Positive periodic solutions
Blood
Differential equations
Nonlinear equations
Topology
Degree theory
Global attractor
Hematopoiesis
Multiplicity
Nonlinear nonautonomous delay differential equations
Positive periodic solution
Problem solving
Amster, Pablo Gustavo
Balderrama, Rocio Celeste
Existence and multiplicity of periodic solutions for a generalized hematopoiesis model
topic_facet Degree theory
Global attractor
Hematopoiesis
Multiplicity
Nonlinear nonautonomous delay differential equations
Positive periodic solutions
Blood
Differential equations
Nonlinear equations
Topology
Degree theory
Global attractor
Hematopoiesis
Multiplicity
Nonlinear nonautonomous delay differential equations
Positive periodic solution
Problem solving
description A generalization of the nonautonomous Mackey–Glass equation for the regulation of the hematopoiesis with several non-constant delays is studied. Using topological degree methods we prove, under appropriate conditions, the existence of multiple positive periodic solutions. Moreover, we show that the conditions are necessary, in the sense that if some sort of complementary conditions are assumed then the trivial equilibrium is a global attractor for the positive solutions and hence periodic solutions do not exist. © 2016, Korean Society for Computational and Applied Mathematics.
author Amster, Pablo Gustavo
Balderrama, Rocio Celeste
author_facet Amster, Pablo Gustavo
Balderrama, Rocio Celeste
author_sort Amster, Pablo Gustavo
title Existence and multiplicity of periodic solutions for a generalized hematopoiesis model
title_short Existence and multiplicity of periodic solutions for a generalized hematopoiesis model
title_full Existence and multiplicity of periodic solutions for a generalized hematopoiesis model
title_fullStr Existence and multiplicity of periodic solutions for a generalized hematopoiesis model
title_full_unstemmed Existence and multiplicity of periodic solutions for a generalized hematopoiesis model
title_sort existence and multiplicity of periodic solutions for a generalized hematopoiesis model
publishDate 2017
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15985865_v55_n1-2_p591_Amster
http://hdl.handle.net/20.500.12110/paper_15985865_v55_n1-2_p591_Amster
work_keys_str_mv AT amsterpablogustavo existenceandmultiplicityofperiodicsolutionsforageneralizedhematopoiesismodel
AT balderramarocioceleste existenceandmultiplicityofperiodicsolutionsforageneralizedhematopoiesismodel
_version_ 1768544101738741760