Anomalous diffusive behavior of a harmonic oscillator driven by a Mittag-Leffler noise
The diffusive behavior of a harmonic oscillator driven by a Mittag-Leffler noise is studied. Using the Laplace analysis we derive exact expressions for the relaxation functions of the particle in terms of generalized Mittag-Leffler functions and its derivatives from a generalized Langevin equation....
Guardado en:
Autores principales: | , |
---|---|
Publicado: |
2009
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15393755_v80_n1_p_Vinales http://hdl.handle.net/20.500.12110/paper_15393755_v80_n1_p_Vinales |
Aporte de: |
id |
paper:paper_15393755_v80_n1_p_Vinales |
---|---|
record_format |
dspace |
spelling |
paper:paper_15393755_v80_n1_p_Vinales2023-06-08T16:20:43Z Anomalous diffusive behavior of a harmonic oscillator driven by a Mittag-Leffler noise Viñales, Angel Daniel Despósito, Marcelo Arnaldo Asymptotic limits Autocorrelation functions Characteristic time Diffusive behavior Generalized Langevin equation Harmonic oscillators Mittag-Leffler functions Power-law Qualitative differences Relaxation functions Harmonic analysis Laplace equation Oscillators (mechanical) Regression analysis Oscillators (electronic) The diffusive behavior of a harmonic oscillator driven by a Mittag-Leffler noise is studied. Using the Laplace analysis we derive exact expressions for the relaxation functions of the particle in terms of generalized Mittag-Leffler functions and its derivatives from a generalized Langevin equation. Our results show that the oscillator displays an anomalous diffusive behavior. In the strictly asymptotic limit, the dynamics of the harmonic oscillator corresponds to an oscillator driven by a noise with a pure power-law autocorrelation function. However, at short and intermediate times the dynamics has qualitative difference due to the presence of the characteristic time of the noise. © 2009 The American Physical Society. Fil:Viñales, A.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Despósito, M.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2009 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15393755_v80_n1_p_Vinales http://hdl.handle.net/20.500.12110/paper_15393755_v80_n1_p_Vinales |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Asymptotic limits Autocorrelation functions Characteristic time Diffusive behavior Generalized Langevin equation Harmonic oscillators Mittag-Leffler functions Power-law Qualitative differences Relaxation functions Harmonic analysis Laplace equation Oscillators (mechanical) Regression analysis Oscillators (electronic) |
spellingShingle |
Asymptotic limits Autocorrelation functions Characteristic time Diffusive behavior Generalized Langevin equation Harmonic oscillators Mittag-Leffler functions Power-law Qualitative differences Relaxation functions Harmonic analysis Laplace equation Oscillators (mechanical) Regression analysis Oscillators (electronic) Viñales, Angel Daniel Despósito, Marcelo Arnaldo Anomalous diffusive behavior of a harmonic oscillator driven by a Mittag-Leffler noise |
topic_facet |
Asymptotic limits Autocorrelation functions Characteristic time Diffusive behavior Generalized Langevin equation Harmonic oscillators Mittag-Leffler functions Power-law Qualitative differences Relaxation functions Harmonic analysis Laplace equation Oscillators (mechanical) Regression analysis Oscillators (electronic) |
description |
The diffusive behavior of a harmonic oscillator driven by a Mittag-Leffler noise is studied. Using the Laplace analysis we derive exact expressions for the relaxation functions of the particle in terms of generalized Mittag-Leffler functions and its derivatives from a generalized Langevin equation. Our results show that the oscillator displays an anomalous diffusive behavior. In the strictly asymptotic limit, the dynamics of the harmonic oscillator corresponds to an oscillator driven by a noise with a pure power-law autocorrelation function. However, at short and intermediate times the dynamics has qualitative difference due to the presence of the characteristic time of the noise. © 2009 The American Physical Society. |
author |
Viñales, Angel Daniel Despósito, Marcelo Arnaldo |
author_facet |
Viñales, Angel Daniel Despósito, Marcelo Arnaldo |
author_sort |
Viñales, Angel Daniel |
title |
Anomalous diffusive behavior of a harmonic oscillator driven by a Mittag-Leffler noise |
title_short |
Anomalous diffusive behavior of a harmonic oscillator driven by a Mittag-Leffler noise |
title_full |
Anomalous diffusive behavior of a harmonic oscillator driven by a Mittag-Leffler noise |
title_fullStr |
Anomalous diffusive behavior of a harmonic oscillator driven by a Mittag-Leffler noise |
title_full_unstemmed |
Anomalous diffusive behavior of a harmonic oscillator driven by a Mittag-Leffler noise |
title_sort |
anomalous diffusive behavior of a harmonic oscillator driven by a mittag-leffler noise |
publishDate |
2009 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15393755_v80_n1_p_Vinales http://hdl.handle.net/20.500.12110/paper_15393755_v80_n1_p_Vinales |
work_keys_str_mv |
AT vinalesangeldaniel anomalousdiffusivebehaviorofaharmonicoscillatordrivenbyamittaglefflernoise AT despositomarceloarnaldo anomalousdiffusivebehaviorofaharmonicoscillatordrivenbyamittaglefflernoise |
_version_ |
1768546508502728704 |