Anomalous diffusive behavior of a harmonic oscillator driven by a Mittag-Leffler noise

The diffusive behavior of a harmonic oscillator driven by a Mittag-Leffler noise is studied. Using the Laplace analysis we derive exact expressions for the relaxation functions of the particle in terms of generalized Mittag-Leffler functions and its derivatives from a generalized Langevin equation....

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Viñales, Angel Daniel, Despósito, Marcelo Arnaldo
Publicado: 2009
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15393755_v80_n1_p_Vinales
http://hdl.handle.net/20.500.12110/paper_15393755_v80_n1_p_Vinales
Aporte de:
id paper:paper_15393755_v80_n1_p_Vinales
record_format dspace
spelling paper:paper_15393755_v80_n1_p_Vinales2023-06-08T16:20:43Z Anomalous diffusive behavior of a harmonic oscillator driven by a Mittag-Leffler noise Viñales, Angel Daniel Despósito, Marcelo Arnaldo Asymptotic limits Autocorrelation functions Characteristic time Diffusive behavior Generalized Langevin equation Harmonic oscillators Mittag-Leffler functions Power-law Qualitative differences Relaxation functions Harmonic analysis Laplace equation Oscillators (mechanical) Regression analysis Oscillators (electronic) The diffusive behavior of a harmonic oscillator driven by a Mittag-Leffler noise is studied. Using the Laplace analysis we derive exact expressions for the relaxation functions of the particle in terms of generalized Mittag-Leffler functions and its derivatives from a generalized Langevin equation. Our results show that the oscillator displays an anomalous diffusive behavior. In the strictly asymptotic limit, the dynamics of the harmonic oscillator corresponds to an oscillator driven by a noise with a pure power-law autocorrelation function. However, at short and intermediate times the dynamics has qualitative difference due to the presence of the characteristic time of the noise. © 2009 The American Physical Society. Fil:Viñales, A.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Despósito, M.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2009 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15393755_v80_n1_p_Vinales http://hdl.handle.net/20.500.12110/paper_15393755_v80_n1_p_Vinales
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Asymptotic limits
Autocorrelation functions
Characteristic time
Diffusive behavior
Generalized Langevin equation
Harmonic oscillators
Mittag-Leffler functions
Power-law
Qualitative differences
Relaxation functions
Harmonic analysis
Laplace equation
Oscillators (mechanical)
Regression analysis
Oscillators (electronic)
spellingShingle Asymptotic limits
Autocorrelation functions
Characteristic time
Diffusive behavior
Generalized Langevin equation
Harmonic oscillators
Mittag-Leffler functions
Power-law
Qualitative differences
Relaxation functions
Harmonic analysis
Laplace equation
Oscillators (mechanical)
Regression analysis
Oscillators (electronic)
Viñales, Angel Daniel
Despósito, Marcelo Arnaldo
Anomalous diffusive behavior of a harmonic oscillator driven by a Mittag-Leffler noise
topic_facet Asymptotic limits
Autocorrelation functions
Characteristic time
Diffusive behavior
Generalized Langevin equation
Harmonic oscillators
Mittag-Leffler functions
Power-law
Qualitative differences
Relaxation functions
Harmonic analysis
Laplace equation
Oscillators (mechanical)
Regression analysis
Oscillators (electronic)
description The diffusive behavior of a harmonic oscillator driven by a Mittag-Leffler noise is studied. Using the Laplace analysis we derive exact expressions for the relaxation functions of the particle in terms of generalized Mittag-Leffler functions and its derivatives from a generalized Langevin equation. Our results show that the oscillator displays an anomalous diffusive behavior. In the strictly asymptotic limit, the dynamics of the harmonic oscillator corresponds to an oscillator driven by a noise with a pure power-law autocorrelation function. However, at short and intermediate times the dynamics has qualitative difference due to the presence of the characteristic time of the noise. © 2009 The American Physical Society.
author Viñales, Angel Daniel
Despósito, Marcelo Arnaldo
author_facet Viñales, Angel Daniel
Despósito, Marcelo Arnaldo
author_sort Viñales, Angel Daniel
title Anomalous diffusive behavior of a harmonic oscillator driven by a Mittag-Leffler noise
title_short Anomalous diffusive behavior of a harmonic oscillator driven by a Mittag-Leffler noise
title_full Anomalous diffusive behavior of a harmonic oscillator driven by a Mittag-Leffler noise
title_fullStr Anomalous diffusive behavior of a harmonic oscillator driven by a Mittag-Leffler noise
title_full_unstemmed Anomalous diffusive behavior of a harmonic oscillator driven by a Mittag-Leffler noise
title_sort anomalous diffusive behavior of a harmonic oscillator driven by a mittag-leffler noise
publishDate 2009
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15393755_v80_n1_p_Vinales
http://hdl.handle.net/20.500.12110/paper_15393755_v80_n1_p_Vinales
work_keys_str_mv AT vinalesangeldaniel anomalousdiffusivebehaviorofaharmonicoscillatordrivenbyamittaglefflernoise
AT despositomarceloarnaldo anomalousdiffusivebehaviorofaharmonicoscillatordrivenbyamittaglefflernoise
_version_ 1768546508502728704