An obstacle problem for tug-of-war games
We consider the obstacle problem for the infinity Laplace equation. Given a Lipschitz boundary function and a Lipschitz obstacle we prove the existence and uniqueness of a super infinity-harmonic function constrained to lie above the obstacle which is infinity harmonic where it lies strictly above t...
Guardado en:
Autor principal: | |
---|---|
Publicado: |
2015
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15340392_v14_n1_p217_Manfredi http://hdl.handle.net/20.500.12110/paper_15340392_v14_n1_p217_Manfredi |
Aporte de: |
id |
paper:paper_15340392_v14_n1_p217_Manfredi |
---|---|
record_format |
dspace |
spelling |
paper:paper_15340392_v14_n1_p217_Manfredi2023-06-08T16:19:59Z An obstacle problem for tug-of-war games Rossi, Julio Daniel Infinity laplacian Obstacle problem Tug-of-war games We consider the obstacle problem for the infinity Laplace equation. Given a Lipschitz boundary function and a Lipschitz obstacle we prove the existence and uniqueness of a super infinity-harmonic function constrained to lie above the obstacle which is infinity harmonic where it lies strictly above the obstacle. Moreover, we show that this function is the limit of value functions of a game we call obstacle tug-of-war. Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2015 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15340392_v14_n1_p217_Manfredi http://hdl.handle.net/20.500.12110/paper_15340392_v14_n1_p217_Manfredi |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Infinity laplacian Obstacle problem Tug-of-war games |
spellingShingle |
Infinity laplacian Obstacle problem Tug-of-war games Rossi, Julio Daniel An obstacle problem for tug-of-war games |
topic_facet |
Infinity laplacian Obstacle problem Tug-of-war games |
description |
We consider the obstacle problem for the infinity Laplace equation. Given a Lipschitz boundary function and a Lipschitz obstacle we prove the existence and uniqueness of a super infinity-harmonic function constrained to lie above the obstacle which is infinity harmonic where it lies strictly above the obstacle. Moreover, we show that this function is the limit of value functions of a game we call obstacle tug-of-war. |
author |
Rossi, Julio Daniel |
author_facet |
Rossi, Julio Daniel |
author_sort |
Rossi, Julio Daniel |
title |
An obstacle problem for tug-of-war games |
title_short |
An obstacle problem for tug-of-war games |
title_full |
An obstacle problem for tug-of-war games |
title_fullStr |
An obstacle problem for tug-of-war games |
title_full_unstemmed |
An obstacle problem for tug-of-war games |
title_sort |
obstacle problem for tug-of-war games |
publishDate |
2015 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15340392_v14_n1_p217_Manfredi http://hdl.handle.net/20.500.12110/paper_15340392_v14_n1_p217_Manfredi |
work_keys_str_mv |
AT rossijuliodaniel anobstacleproblemfortugofwargames AT rossijuliodaniel obstacleproblemfortugofwargames |
_version_ |
1768542333431709696 |