Ionization of the hydrogen atom by short half-cycle pulses: Dependence on the pulse duration

A theoretical study of the ionization of hydrogen atoms by short external half-cycle pulses (HCPs) as a function of the pulse duration, using different quantum and classical approaches, is presented. Total ionization probability and energy distributions of ejected electrons are calculated in the fra...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Arbó, Diego Gabriel, Gravielle, Maria Silvia, Miraglia, Jorge Esteban
Publicado: 2010
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14346060_v59_n2_p193_Arbo
http://hdl.handle.net/20.500.12110/paper_14346060_v59_n2_p193_Arbo
Aporte de:
id paper:paper_14346060_v59_n2_p193_Arbo
record_format dspace
spelling paper:paper_14346060_v59_n2_p193_Arbo2023-06-08T16:15:31Z Ionization of the hydrogen atom by short half-cycle pulses: Dependence on the pulse duration Arbó, Diego Gabriel Gravielle, Maria Silvia Miraglia, Jorge Esteban A theoretical study of the ionization of hydrogen atoms by short external half-cycle pulses (HCPs) as a function of the pulse duration, using different quantum and classical approaches, is presented. Total ionization probability and energy distributions of ejected electrons are calculated in the framework of the singly-distorted Coulomb-Volkov (SDCV) and the doubly-distorted Coulomb-Volkov (DDCV) approximations. We also performed quasiclassical calculations based on a classical trajectory Monte Carlo method which includes the possibility of tunneling (CTMC-T). Quantum and classical results are compared to the numerical solution of the time-dependent Schrödinger equation (TDSE). We find that for high momentum transfers the DDCV shows an improvement compared to the SDCV, especially in the low-energy region of the electron emission spectra, where SDCV fails. In addition, DDCV reproduces successfully the TDSE electron energy distributions at weak momentum transfers. CTMC-T results reveal the importance of tunneling in the ionization process for relative long pulses and strong momentum transfers but fails to overcome the well-known classical suppression observed for weak electric fields. © EDP Sciences, Societá Italiana di Fisica, Springer-Verlag 2010. Fil:Arbó, D.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Gravielle, M.S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Miraglia, J.E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2010 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14346060_v59_n2_p193_Arbo http://hdl.handle.net/20.500.12110/paper_14346060_v59_n2_p193_Arbo
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description A theoretical study of the ionization of hydrogen atoms by short external half-cycle pulses (HCPs) as a function of the pulse duration, using different quantum and classical approaches, is presented. Total ionization probability and energy distributions of ejected electrons are calculated in the framework of the singly-distorted Coulomb-Volkov (SDCV) and the doubly-distorted Coulomb-Volkov (DDCV) approximations. We also performed quasiclassical calculations based on a classical trajectory Monte Carlo method which includes the possibility of tunneling (CTMC-T). Quantum and classical results are compared to the numerical solution of the time-dependent Schrödinger equation (TDSE). We find that for high momentum transfers the DDCV shows an improvement compared to the SDCV, especially in the low-energy region of the electron emission spectra, where SDCV fails. In addition, DDCV reproduces successfully the TDSE electron energy distributions at weak momentum transfers. CTMC-T results reveal the importance of tunneling in the ionization process for relative long pulses and strong momentum transfers but fails to overcome the well-known classical suppression observed for weak electric fields. © EDP Sciences, Societá Italiana di Fisica, Springer-Verlag 2010.
author Arbó, Diego Gabriel
Gravielle, Maria Silvia
Miraglia, Jorge Esteban
spellingShingle Arbó, Diego Gabriel
Gravielle, Maria Silvia
Miraglia, Jorge Esteban
Ionization of the hydrogen atom by short half-cycle pulses: Dependence on the pulse duration
author_facet Arbó, Diego Gabriel
Gravielle, Maria Silvia
Miraglia, Jorge Esteban
author_sort Arbó, Diego Gabriel
title Ionization of the hydrogen atom by short half-cycle pulses: Dependence on the pulse duration
title_short Ionization of the hydrogen atom by short half-cycle pulses: Dependence on the pulse duration
title_full Ionization of the hydrogen atom by short half-cycle pulses: Dependence on the pulse duration
title_fullStr Ionization of the hydrogen atom by short half-cycle pulses: Dependence on the pulse duration
title_full_unstemmed Ionization of the hydrogen atom by short half-cycle pulses: Dependence on the pulse duration
title_sort ionization of the hydrogen atom by short half-cycle pulses: dependence on the pulse duration
publishDate 2010
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14346060_v59_n2_p193_Arbo
http://hdl.handle.net/20.500.12110/paper_14346060_v59_n2_p193_Arbo
work_keys_str_mv AT arbodiegogabriel ionizationofthehydrogenatombyshorthalfcyclepulsesdependenceonthepulseduration
AT graviellemariasilvia ionizationofthehydrogenatombyshorthalfcyclepulsesdependenceonthepulseduration
AT miragliajorgeesteban ionizationofthehydrogenatombyshorthalfcyclepulsesdependenceonthepulseduration
_version_ 1768546601959161856