A variable exponent diffusion problem of concave-convex nature

We deal with the problem (formula presented) Where Ω ⊂ ℝN is a bounded smooth domain, λ > 0 is a parameter and the exponent q(x) is a continuous positive function that takes values both greater than and less than one in Ω. It is therefore a kind of concave-convex problem where the presence of...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Rossi, Julio Daniel
Publicado: 2016
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_12303429_v47_n2_p613_GarciaMelian
http://hdl.handle.net/20.500.12110/paper_12303429_v47_n2_p613_GarciaMelian
Aporte de:
id paper:paper_12303429_v47_n2_p613_GarciaMelian
record_format dspace
spelling paper:paper_12303429_v47_n2_p613_GarciaMelian2023-06-08T16:10:10Z A variable exponent diffusion problem of concave-convex nature Rossi, Julio Daniel A priori bounds Concave-convex Leray–Schauder degree Minimal solution Variable exponent We deal with the problem (formula presented) Where Ω ⊂ ℝN is a bounded smooth domain, λ > 0 is a parameter and the exponent q(x) is a continuous positive function that takes values both greater than and less than one in Ω. It is therefore a kind of concave-convex problem where the presence of the interphase q = 1 in Ω poses some new diffculties to be tackled. The results proved in this work are the existence of λ* > 0 such that no positive solutions are possible for λ > λ*, the existence and structural properties of a branch of minimal solutions, uλ, 0 < λ < λ*, and, finally, the existence for all λ ∊ (0; λ*) of a second positive solution. © 2016 Juliusz Schauder Centre for Nonlinear Studies. Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2016 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_12303429_v47_n2_p613_GarciaMelian http://hdl.handle.net/20.500.12110/paper_12303429_v47_n2_p613_GarciaMelian
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic A priori bounds
Concave-convex
Leray–Schauder degree
Minimal solution
Variable exponent
spellingShingle A priori bounds
Concave-convex
Leray–Schauder degree
Minimal solution
Variable exponent
Rossi, Julio Daniel
A variable exponent diffusion problem of concave-convex nature
topic_facet A priori bounds
Concave-convex
Leray–Schauder degree
Minimal solution
Variable exponent
description We deal with the problem (formula presented) Where Ω ⊂ ℝN is a bounded smooth domain, λ > 0 is a parameter and the exponent q(x) is a continuous positive function that takes values both greater than and less than one in Ω. It is therefore a kind of concave-convex problem where the presence of the interphase q = 1 in Ω poses some new diffculties to be tackled. The results proved in this work are the existence of λ* > 0 such that no positive solutions are possible for λ > λ*, the existence and structural properties of a branch of minimal solutions, uλ, 0 < λ < λ*, and, finally, the existence for all λ ∊ (0; λ*) of a second positive solution. © 2016 Juliusz Schauder Centre for Nonlinear Studies.
author Rossi, Julio Daniel
author_facet Rossi, Julio Daniel
author_sort Rossi, Julio Daniel
title A variable exponent diffusion problem of concave-convex nature
title_short A variable exponent diffusion problem of concave-convex nature
title_full A variable exponent diffusion problem of concave-convex nature
title_fullStr A variable exponent diffusion problem of concave-convex nature
title_full_unstemmed A variable exponent diffusion problem of concave-convex nature
title_sort variable exponent diffusion problem of concave-convex nature
publishDate 2016
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_12303429_v47_n2_p613_GarciaMelian
http://hdl.handle.net/20.500.12110/paper_12303429_v47_n2_p613_GarciaMelian
work_keys_str_mv AT rossijuliodaniel avariableexponentdiffusionproblemofconcaveconvexnature
AT rossijuliodaniel variableexponentdiffusionproblemofconcaveconvexnature
_version_ 1768545019385348096